Pregunta
upstudy study bank question image url

2) Solve the equatior \( 2 y+3=3(y+7) \)

Ask by Gross Sullivan. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( y = -18 \)

Solución

Certainly! Let's solve the equation step by step. **Given Equation:** \[ 2y + 3 = 3(y + 7) \] **Step 1: Expand the Right Side** First, distribute the 3 on the right side of the equation: \[ 3(y + 7) = 3 \times y + 3 \times 7 = 3y + 21 \] Now the equation looks like: \[ 2y + 3 = 3y + 21 \] **Step 2: Bring Like Terms Together** To isolate the variable \( y \), let's move all terms containing \( y \) to one side and constant terms to the other side. Subtract \( 2y \) from both sides: \[ 2y + 3 - 2y = 3y + 21 - 2y \] \[ 3 = y + 21 \] **Step 3: Isolate the Variable \( y \)** Now, subtract 21 from both sides to solve for \( y \): \[ 3 - 21 = y + 21 - 21 \] \[ -18 = y \] **Solution:** \[ y = -18 \] **Verification:** It's always a good practice to substitute the found value back into the original equation to ensure it's correct. Substitute \( y = -18 \) into the original equation: \[ 2(-18) + 3 = 3((-18) + 7) \] \[ -36 + 3 = 3(-11) \] \[ -33 = -33 \] Both sides are equal, confirming that \( y = -18 \) is the correct solution.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( 2y + 3 = 3(y + 7) \), first, distribute the 3 on the right side: \( 2y + 3 = 3y + 21 \). Next, subtract \( 2y \) from both sides to get \( 3 = y + 21 \). Finally, subtract 21 from both sides to isolate \( y \): \( y = 3 - 21 = -18 \). So, the solution is \( y = -18 \). Now, let's keep the math excitement rolling. Did you know that equations like this one, involving simple linear equations, are often used in everyday situations, like calculating expenses or determining quantities in recipes? Mastering these basics sets you up for solving more complex problems, like those you might face in finance or engineering! However, a common mistake when solving equations is forgetting to distribute or combine like terms correctly. Always double-check your steps, especially when dealing with parentheses and coefficients! Keeping your work organized can help you catch errors quickly.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad