Which transformations have been performed on the graph of \( f(x)=\sqrt{x} \) to obtain the graph of \( g(x)=-0.3 \sqrt{x}-4 \) ? Select each correct answer. Select 3 correct answer(s) reflect the graph over the x-axis stretch the graph away from the x-axis compress the graph closer to the x-axis translate the graph to the right translate the graph to the left translate the graph down
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To obtain the graph of \( g(x) = -0.3 \sqrt{x} - 4 \) from \( f(x) = \sqrt{x} \), there are several transformations at play. First, the negative sign in front of the \( 0.3 \) indicates that the graph is reflected over the x-axis. This means all y-values are inverted, transforming the shape of the graph below the x-axis. Next, the \( -4 \) term represents a vertical translation down by 4 units. This moves the entire graph downward, adjusting all y-values down by 4. Finally, the coefficient \( -0.3 \) acts as a vertical compression towards the x-axis. This changes the steepness of the graph, making it closer to the x-axis than the original function typically would be. So the three correct transformations are: reflect the graph over the x-axis, translate the graph down, and compress the graph closer to the x-axis.