Pregunta
upstudy study bank question image url

\( \begin{array}{ll}5.1 .1 & \text { Calcuate the accelaration of the } 20 \mathrm{~kg} \text { mass. } \\ 5.12 & \text { Calculate the speed of the } 20 \mathrm{~kg} \text { mass as it strices the ground } \\ 5.1 .3 & \text { At what minimum distance from the pulley should the } 5 \mathrm{~kg} \text { mass be place } \\ \text { inilialy, so that the } 20 \mathrm{~kg} \text { mass just strices the ground? }\end{array} \)

Ask by Ramirez Black. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The acceleration of the 20 kg mass is 5.88 m/s² downward.

Solución

Sure, let's tackle **Problem 5.1.1** step by step. ### **Problem 5.1.1** **Calculate the acceleration of the 20 kg mass.** #### **Assumptions:** 1. **System Setup:** We have two masses connected by a rope over a frictionless and massless pulley. - **Mass \( m_1 = 20 \, \text{kg} \)** - **Mass \( m_2 = 5 \, \text{kg} \)** 2. **Direction of Motion:** The heavier mass (\( m_1 \)) will accelerate downward, while the lighter mass (\( m_2 \)) will accelerate upward. 3. **Negligible Pulley and Rope Mass:** The pulley is frictionless and massless, and the rope is massless and inextensible. 4. **Gravitational Acceleration:** \( g = 9.8 \, \text{m/s}² \) #### **Applying Newton’s Second Law:** For the **20 kg mass (\( m_1 \))**: \[ m_1 g - T = m_1 a \quad \text{(1)} \] Where: - \( T \) is the tension in the rope. - \( a \) is the acceleration. For the **5 kg mass (\( m_2 \))**: \[ T - m_2 g = m_2 a \quad \text{(2)} \] #### **Solving the Equations:** 1. **Add Equations (1) and (2)** to eliminate \( T \): \[ m_1 g - T + T - m_2 g = m_1 a + m_2 a \] \[ (m_1 - m_2)g = (m_1 + m_2)a \] 2. **Solve for \( a \):** \[ a = \frac{(m_1 - m_2)g}{m_1 + m_2} \] 3. **Plug in the Given Values:** \[ a = \frac{(20 \, \text{kg} - 5 \, \text{kg}) \times 9.8 \, \text{m/s}²}{20 \, \text{kg} + 5 \, \text{kg}} = \frac{15 \times 9.8}{25} = \frac{147}{25} = 5.88 \, \text{m/s}² \] #### **Final Answer:** The acceleration of the 20 kg mass is **5.88 m/s² downward**. ### **Summary:** \[ a = 5.88 \, \text{m/s}² \quad \text{(downward)} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the acceleration of the 20 kg mass, you can use Newton's second law, \( F = ma \). If we assume it’s in free fall (ignoring air resistance) and its weight is the only force acting on it, then \( F = mg = 20\, \text{kg} \times 9.81\, \text{m/s}^2 = 196.2\, \text{N} \). Thus, the acceleration \( a \) would be \( a = \frac{F}{m} = \frac{196.2\, \text{N}}{20\, \text{kg}} = 9.81\, \text{m/s}^2 \). Now, for the speed of the 20 kg mass as it strikes the ground, you can use the equation \( v^2 = u^2 + 2as \). Assuming the mass starts from rest (u = 0) and falls a distance \( s \), the final speed \( v \) when it hits the ground is given by \( v = \sqrt{2as} \). If you know the height from which it falls, just plug in the values to calculate the speed. Lastly, to know how far the 5 kg mass needs to be from the pulley, you'd use the principles of conservation of energy and kinematics, ensuring you account for the initial potential energy of the 5 kg mass and the kinetic energy of the falling 20 kg mass reaching the ground. Just make sure to balance forces for a successful system!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad