Pregunta
upstudy study bank question image url

Which ordered pair is a solution \( y=x^{2}-6 x+11 \) \( y=-3 x+9 \)

Ask by Howell Wood. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The ordered pairs that solve the system are (1, 6) and (2, 3).

Solución

To find the ordered pairs \((x, y)\) that satisfy both equations: \[ y = x^2 - 6x + 11 \] \[ y = -3x + 9 \] **Step 1: Set the equations equal to each other.** \[ x^2 - 6x + 11 = -3x + 9 \] **Step 2: Move all terms to one side to form a quadratic equation.** \[ x^2 - 6x + 3x + 11 - 9 = 0 \] \[ x^2 - 3x + 2 = 0 \] **Step 3: Factor the quadratic equation.** \[ (x - 1)(x - 2) = 0 \] **Step 4: Solve for \(x\).** \[ x = 1 \quad \text{or} \quad x = 2 \] **Step 5: Find the corresponding \(y\) values using \(y = -3x + 9\).** - For \(x = 1\): \[ y = -3(1) + 9 = 6 \] - For \(x = 2\): \[ y = -3(2) + 9 = 3 \] **Solution:** The ordered pairs that are solutions to the system are \((1, 6)\) and \((2, 3)\). **Answer:** Both (1, 6) and (2, 3) are ordered pairs that solve the given system.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's find the intersection of the two equations by setting them equal to each other since both are equal to \( y \): \( x^{2} - 6x + 11 = -3x + 9 \). Rearranging gives: \( x^{2} - 3x + 2 = 0 \). Factoring this gives: \( (x - 1)(x - 2) = 0 \). So, \( x = 1 \) and \( x = 2 \). Plugging both values back into either equation (let’s use \( y = -3x + 9 \)): For \( x = 1 \): \( y = -3(1) + 9 = 6 \). So, one solution is \( (1, 6) \). For \( x = 2 \): \( y = -3(2) + 9 = 3 \). So, another solution is \( (2, 3) \). Therefore, the ordered pairs that are solutions are \( (1, 6) \) and \( (2, 3) \). Now, the next logical step is figuring out how we can analyze the graph of both equations to better understand their intersection. Graphing the first equation will give you a parabola opening upwards, while the second will yield a straight line. Their points of intersection represent the pairs we found—like solving a mystery of where two paths cross! Moreover, remember that substituting values back into the original equations is crucial when solving such systems, as this helps confirm your solutions. Always check your work to avoid mistakes, like miscalculation or overlooking a possible pair!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad