Pregunta
upstudy study bank question image url

Find a counterexample to show that the following statement is false. Adding the same number to both the numerator and the denominator (top and bottom) of a fraction does not change the fraction's value. Choose the correct answer below. \( \frac{1+0}{2+0}=\frac{1}{2} \); the fraction \( \frac{1}{2} \) is equal to \( \frac{1}{2} \). \( \frac{3+4}{3+4}=\frac{7}{7} \); the fraction \( \frac{7}{7} \) is not equal to \( \frac{3}{3} \). \( \frac{1 \cdot 3}{2+1}=\frac{2}{3} \); the fraction \( \frac{2}{3} \) is not equal to \( \frac{1}{2} \); the fraction \( \frac{3}{6} \) is equal to \( \frac{1}{2} \).

Ask by Mckenzie Moran. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Adding the same number to both the numerator and denominator changes the fraction's value. For example, \(\frac{1+1}{2+1} = \frac{2}{3}\), which is not equal to \(\frac{1}{2}\).

Solución

To demonstrate that adding the same number to both the numerator and the denominator of a fraction can **change** the fraction's value, let's examine the provided options: 1. **Option 1:** \[ \frac{1+0}{2+0} = \frac{1}{2} \] - **Analysis:** Here, adding 0 to both the numerator and the denominator leaves the fraction unchanged: \[ \frac{1}{2} = \frac{1}{2} \] - **Conclusion:** This does **not** serve as a counterexample since the fraction's value remains the same. 2. **Option 2:** \[ \frac{3+4}{3+4} = \frac{7}{7} = 1 \] - **Analysis:** Initially, consider the original fraction before adding: \[ \frac{3}{3} = 1 \] After adding 4 to both: \[ \frac{7}{7} = 1 \] - **Conclusion:** The fraction's value remains unchanged. Additionally, the statement claims \(\frac{7}{7}\) is not equal to \(\frac{3}{3}\), which is incorrect since both equal 1. Thus, this is **not** a valid counterexample. 3. **Option 3:** \[ \frac{1 + 1}{2 + 1} = \frac{2}{3} \] - **Analysis:** Start with the original fraction: \[ \frac{1}{2} \] After adding 1 to both numerator and denominator: \[ \frac{2}{3} \] Comparing the two: \[ \frac{2}{3} \neq \frac{1}{2} \] Additionally, note that: \[ \frac{3}{6} = \frac{1}{2} \] - **Conclusion:** Adding the same number (in this case, 1) to both the numerator and the denominator **changes** the value of the fraction from \(\frac{1}{2}\) to \(\frac{2}{3}\). This serves as a valid **counterexample** to the original statement. **Final Answer:** **Option 3:** \[ \frac{1+1}{2+1} = \frac{2}{3} \] The fraction \(\frac{2}{3}\) is not equal to \(\frac{1}{2}\); thus, adding the same number changes the fraction's value.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's consider the fraction \(\frac{1}{2}\). If we add 1 to both the numerator and the denominator, we get: \[ \frac{1+1}{2+1} = \frac{2}{3} \] As you can see, \(\frac{2}{3}\) is not equal to \(\frac{1}{2}\). So, the counterexample shows that adding the same number to both parts of the fraction does indeed change its value! By the way, just as a side note, it's always good to remember that mathematical operations can lead to surprising results—much like when you think you're retaining all the cookies, but then a mischievous friend brings out a hidden stash!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad