Use the information given about the angle \( \theta, \cos \theta=-\frac{\sqrt{3}}{3}, \frac{\pi}{2}<\theta<\pi \), to find the exact values of the foliowing. \( \begin{array}{llll}\text { (a) } \sin (2 \theta) & \text { (b) } \cos (2 \theta) & \text { (c) } \sin \frac{\theta}{2} & \text { (d) } \cos \frac{\theta}{2}\end{array} \) (a) \( \sin (2 \theta)=\square \) (Type an exact answer, using radicals as needed.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve this, we start with the given information where \( \cos \theta = -\frac{\sqrt{3}}{3} \) and \( \frac{\pi}{2} < \theta < \pi \). Since \( \theta \) is in the second quadrant, we can find \( \sin \theta \) using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1. \] So, \[ \sin^2 \theta + \left(-\frac{\sqrt{3}}{3}\right)^2 = 1, \] \[ \sin^2 \theta + \frac{3}{9} = 1, \] \[ \sin^2 \theta + \frac{1}{3} = 1, \] \[ \sin^2 \theta = 1 - \frac{1}{3} = \frac{2}{3}. \] Since \( \sin \theta \) is positive in the second quadrant, \[ \sin \theta = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3}. \] Now we can find the values: **(a)** To find \( \sin(2\theta) \): \[ \sin(2\theta) = 2\sin \theta \cos \theta = 2 \left( \frac{\sqrt{6}}{3} \right) \left( -\frac{\sqrt{3}}{3} \right) = -\frac{2\sqrt{18}}{9} = -\frac{6\sqrt{2}}{9} = -\frac{2\sqrt{2}}{3}. \] So, (a) \( \sin(2\theta)=-\frac{2\sqrt{2}}{3} \). Now, we can use it to compute \( (b) \cos(2\theta) \), \( (c) \sin(\frac{\theta}{2}) \), and \( (d) \cos(\frac{\theta}{2}) \). **(b)** To find \( \cos(2\theta) \): \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta = \left(-\frac{\sqrt{3}}{3}\right)^2 - \left(\frac{\sqrt{6}}{3}\right)^2 = \frac{3}{9} - \frac{6}{9} = -\frac{3}{9} = -\frac{1}{3}. \] (b) \( \cos(2\theta)=-\frac{1}{3} \). **(c)** To find \( \sin(\frac{\theta}{2}) \) using the half-angle formula: \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 - \left(-\frac{\sqrt{3}}{3}\right)}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3 + \sqrt{3}}{3}}{2}} = \sqrt{\frac{3 + \sqrt{3}}{6}}. \] (c) \( \sin\left(\frac{\theta}{2}\right)=\sqrt{\frac{3 + \sqrt{3}}{6}} \). **(d)** To find \( \cos(\frac{\theta}{2}) \): \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3 - \sqrt{3}}{3}}{2}} = \sqrt{\frac{3 - \sqrt{3}}{6}}. \] (d) \( \cos\left(\frac{\theta}{2}\right)=\sqrt{\frac{3 - \sqrt{3}}{6}} \). In conclusion, (a) \( \sin(2\theta) = -\frac{2\sqrt{2}}{3} \), (b) \( \cos(2\theta) = -\frac{1}{3} \), (c) \( \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{3 + \sqrt{3}}{6}} \), (d) \( \cos\left(\frac{\theta}{2}\right) =