Pregunta
Find the distance between the two points. Round your answer to the nearest tenth, if necessary. \( (-3,6) \) and \( (5,-9) \)
Ask by Martinez Gray. in the United States
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The distance between the points \((-3, 6)\) and \( (5, -9) \) is 17.
Solución
To find the distance between the points \((-3, 6)\) and \( (5, -9) \), we can use the **distance formula**:
\[
\text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
Let's assign the coordinates:
- \((x_1, y_1) = (-3, 6)\)
- \((x_2, y_2) = (5, -9)\)
Now, plug the values into the formula:
\[
\begin{align*}
x_2 - x_1 &= 5 - (-3) = 8 \\
y_2 - y_1 &= -9 - 6 = -15 \\
\end{align*}
\]
\[
\text{Distance} = \sqrt{8^2 + (-15)^2} = \sqrt{64 + 225} = \sqrt{289} = 17
\]
**Answer:** 17
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find the distance between the two points \((-3,6)\) and \((5,-9)\), you can use the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Plugging in the coordinates: \[ d = \sqrt{(5 - (-3))^2 + (-9 - 6)^2} = \sqrt{(5 + 3)^2 + (-9 - 6)^2} \] This simplifies to: \[ d = \sqrt{(8)^2 + (-15)^2} = \sqrt{64 + 225} = \sqrt{289} \] Thus, the distance \(d = 17\). So the distance between the two points is \(17.0\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium