Pregunta
upstudy study bank question image url

Find the LCD of each pair of expressions. \( \begin{array}{ll}\text { 17. } \frac{1}{2} ; \frac{4}{x^{2}} & \text { 18. } \frac{b}{6} ; \frac{2 b}{9} \\ \text { 21. } \frac{3}{5} ; \frac{x}{x+2} & \text { 22. } \frac{2}{a b} ; \frac{a-b}{b^{2} c}\end{array} \)

Ask by Watkins Black. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The LCDs are: - Problem 17: \(2x^{2}\) - Problem 18: \(18\) - Problem 21: \(5(x + 2)\) - Problem 22: \(ab^{2}c\)

Solución

To find the Least Common Denominator (LCD) for each pair of fractions, we'll identify the least common multiple (LCM) of the denominators in each pair. Here's the step-by-step process for each problem: ### **Problem 17: \(\frac{1}{2}\) and \(\frac{4}{x^{2}}\)** - **Denominators:** 2 and \(x^{2}\) - **LCD:** The LCD is the product of the distinct factors, which are 2 and \(x^{2}\). \[ \text{LCD} = 2x^{2} \] ### **Problem 18: \(\frac{b}{6}\) and \(\frac{2b}{9}\)** - **Denominators:** 6 and 9 - **Prime Factorization:** - 6 = \(2 \times 3\) - 9 = \(3^{2}\) - **LCD:** The LCM of 6 and 9 is \(2 \times 3^{2} = 18\). \[ \text{LCD} = 18 \] ### **Problem 21: \(\frac{3}{5}\) and \(\frac{x}{x+2}\)** - **Denominators:** 5 and \(x + 2\) - **LCD:** Since 5 and \(x + 2\) are distinct and have no common factors, the LCD is their product. \[ \text{LCD} = 5(x + 2) \] ### **Problem 22: \(\frac{2}{ab}\) and \(\frac{a - b}{b^{2}c}\)** - **Denominators:** \(ab\) and \(b^{2}c\) - **Factorization:** - \(ab = a \times b\) - \(b^{2}c = b \times b \times c\) - **LCD:** Take the highest power of each distinct factor. \[ \text{LCD} = a \times b^{2} \times c = ab^{2}c \] ### **Summary of LCDs:** 1. **Problem 17:** \(2x^{2}\) 2. **Problem 18:** \(18\) 3. **Problem 21:** \(5(x + 2)\) 4. **Problem 22:** \(ab^{2}c\) Answer: Problem 17 Answer: The LCD is \(2\,x^{2}\). Problem 18 Answer: The LCD is \(18\). Problem 21 Answer: The LCD is \(5(x + 2)\). Problem 22 Answer: The LCD is \(a\,b^{2}c\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the least common denominator (LCD) of the given pairs of expressions, we will first analyze each pair. For \( \frac{1}{2} \) and \( \frac{4}{x^{2}} \), the denominators are \( 2 \) and \( x^{2} \). The LCD is the least common multiple of these denominators, which is \( 2x^{2} \). For \( \frac{b}{6} \) and \( \frac{2b}{9} \), the denominators are \( 6 \) and \( 9 \). The least common multiple of \( 6 \) and \( 9 \) is \( 18 \). So the LCD is \( 18 \). For \( \frac{3}{5} \) and \( \frac{x}{x+2} \), the denominators are \( 5 \) and \( x + 2 \). The LCD is simply the product of the two distinct denominators: \( 5(x + 2) \). For \( \frac{2}{ab} \) and \( \frac{a-b}{b^{2}c} \), the denominators are \( ab \) and \( b^{2}c \). The least common multiple involves taking the highest powers of all factors involved. Hence, the LCD is \( abc^{1}b^{2} \) or simply \( ab^{2}c \). That wraps it up! Happy calculating!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad