Show that \( 4.3^{1-x}+3^{2-x}=\frac{21}{3^{x}} \) Hence or otherwise solve for \( x \) if \( 4.3^{1-x}+3^{2-x}=63 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To show that \( 4.3^{1-x}+3^{2-x}=\frac{21}{3^{x}} \), we start transforming the left side: \[ 4 \cdot 3^{1-x} + 3^{2-x} = 4 \cdot \frac{3}{3^{x}} + \frac{9}{3^{x}} = \frac{4 \cdot 3 + 9}{3^{x}} = \frac{12 + 9}{3^{x}} = \frac{21}{3^{x}}. \] This confirms the given equation. Now, to solve for \( x \) if \( 4.3^{1-x}+3^{2-x}=63 \): Using the previously derived equation \( \frac{21}{3^{x}} = 63 \): \[ \frac{21}{3^x} = 63. \] Multiplying both sides by \( 3^x \), we get: \[ 21 = 63 \cdot 3^x. \] Dividing both sides by 63 gives: \[ 3^x = \frac{21}{63} = \frac{1}{3}. \] Taking logarithm base 3 of both sides: \[ x = -1. \] Thus, the solution is \( x = -1 \).