Consider the function \( f(x)=4 x^{2}-5 x-3 \) and complete parts (a) through (c). (a) Find \( f(a+h) \). (b) Find \( \frac{f(a+h)-f(a)}{h}, h \neq 0 \). (c) Find the instantaneous rate of change of \( f \) when \( a=7 \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To get started with the function \( f(x) = 4x^2 - 5x - 3 \), let's break it down: (a) To find \( f(a+h) \), substitute \( a+h \) for \( x \) in the function: \[ f(a+h) = 4(a+h)^2 - 5(a+h) - 3 = 4(a^2 + 2ah + h^2) - 5a - 5h - 3 = 4a^2 + 8ah + 4h^2 - 5a - 5h - 3 \] (b) Now, compute \( \frac{f(a+h) - f(a)}{h} \): \[ f(a) = 4a^2 - 5a - 3 \] Thus, \[ f(a+h) - f(a) = (4a^2 + 8ah + 4h^2 - 5a - 5h - 3) - (4a^2 - 5a - 3) = 8ah + 4h^2 - 5h \] Therefore, \[ \frac{f(a+h) - f(a)}{h} = \frac{8ah + 4h^2 - 5h}{h} = 8a + 4h - 5 \] (c) For the instantaneous rate of change when \( a = 7 \), set \( a = 7 \) in the expression found in part (b): \[ \text{Instantaneous Rate} = 8(7) + 4h - 5 = 56 + 4h - 5 = 51 + 4h \] As \( h \) approaches \( 0 \), the instantaneous rate of change is \[ 51 \]