1. It is given that \( a=2 n(n-3 k) \). (i) Find \( a \) when \( n=0.5 \) and \( k=-1.2 \). (ii) Express \( k \) in terms of \( a \) and \( n \). (ii)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find \( a \) when \( n=0.5 \) and \( k=-1.2 \): (i) Substitute the values into the expression: \[ a = 2 n(n - 3k) = 2 \times 0.5 \times (0.5 - 3 \times (-1.2)) \] First, calculate \( 3 \times (-1.2) = -3.6 \), so: \[ 0.5 - (-3.6) = 0.5 + 3.6 = 4.1 \] Then, substitute back: \[ a = 2 \times 0.5 \times 4.1 = 1 \times 4.1 = 4.1 \] So, \( a = 4.1 \). (ii) To express \( k \) in terms of \( a \) and \( n \), start from the original equation. Rearranging gives: \[ a = 2n(n - 3k) \] \[ n - 3k = \frac{a}{2n} \] Reorganizing for \( k \): \[ -3k = \frac{a}{2n} - n \] \[ k = \frac{n - \frac{a}{2n}}{3} \] \[ k = \frac{n^2 - \frac{a}{2}}{3n} \] Thus, \( k \) in terms of \( a \) and \( n \) is: \[ k = \frac{n^2 - \frac{a}{2}}{3n} \]