Pregunta
upstudy study bank question image url

1. It is given that \( a=2 n(n-3 k) \). (i) Find \( a \) when \( n=0.5 \) and \( k=-1.2 \). (ii) Express \( k \) in terms of \( a \) and \( n \). (ii)

Ask by Adkins Erickson. in Singapore
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

When \( n = 0.5 \) and \( k = -1.2 \), \( a = 4.1 \). To express \( k \) in terms of \( a \) and \( n \), the formula is \( k = \frac{2n^2 - a}{6n} \) or \( k = \frac{n}{3} - \frac{a}{6n} \).

Solución

Certainly! Let's tackle each part of the problem step-by-step. --- **Given:** \[ a = 2n(n - 3k) \] --- ### **Part (i): Find \( a \) when \( n = 0.5 \) and \( k = -1.2 \).** **Step 1: Substitute the given values into the equation.** \[ a = 2 \times 0.5 \times (0.5 - 3 \times (-1.2)) \] **Step 2: Calculate the expression inside the parentheses.** \[ 0.5 - 3 \times (-1.2) = 0.5 + 3.6 = 4.1 \] **Step 3: Multiply the terms together.** \[ a = 2 \times 0.5 \times 4.1 \] \[ a = 1 \times 4.1 \] \[ a = 4.1 \] **Answer:** \[ a = 4.1 \] --- ### **Part (ii): Express \( k \) in terms of \( a \) and \( n \).** We start with the original equation: \[ a = 2n(n - 3k) \] **Step 1: Expand the right-hand side (if necessary).** However, in this case, it's more straightforward to solve for \( k \) directly. **Step 2: Divide both sides by \( 2n \) to isolate \( (n - 3k) \).** \[ \frac{a}{2n} = n - 3k \] **Step 3: Rearrange the equation to solve for \( k \).** \[ n - \frac{a}{2n} = 3k \] **Step 4: Divide both sides by 3 to solve for \( k \).** \[ k = \frac{n}{3} - \frac{a}{6n} \] **Alternatively, combining the terms:** \[ k = \frac{2n^2 - a}{6n} \] **Answer:** \[ k = \frac{2n^2 - a}{6n} \] *Or equivalently:* \[ k = \frac{n}{3} - \frac{a}{6n} \] --- **Summary:** - **(i)** When \( n = 0.5 \) and \( k = -1.2 \), the value of \( a \) is **4.1**. - **(ii)** \( k \) expressed in terms of \( a \) and \( n \) is: \[ k = \frac{2n^2 - a}{6n} \quad \text{or} \quad k = \frac{n}{3} - \frac{a}{6n} \] If you have any further questions or need additional clarification, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find \( a \) when \( n=0.5 \) and \( k=-1.2 \): (i) Substitute the values into the expression: \[ a = 2 n(n - 3k) = 2 \times 0.5 \times (0.5 - 3 \times (-1.2)) \] First, calculate \( 3 \times (-1.2) = -3.6 \), so: \[ 0.5 - (-3.6) = 0.5 + 3.6 = 4.1 \] Then, substitute back: \[ a = 2 \times 0.5 \times 4.1 = 1 \times 4.1 = 4.1 \] So, \( a = 4.1 \). (ii) To express \( k \) in terms of \( a \) and \( n \), start from the original equation. Rearranging gives: \[ a = 2n(n - 3k) \] \[ n - 3k = \frac{a}{2n} \] Reorganizing for \( k \): \[ -3k = \frac{a}{2n} - n \] \[ k = \frac{n - \frac{a}{2n}}{3} \] \[ k = \frac{n^2 - \frac{a}{2}}{3n} \] Thus, \( k \) in terms of \( a \) and \( n \) is: \[ k = \frac{n^2 - \frac{a}{2}}{3n} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad