Graph the rational function. \[ f(x)=\frac{-16}{x^{2}-2 x-8} \] Start by drawing the vertical and horizontal asymptotes. Then plot the intercepts (if any), and plot at least one point on each side of each vertical asymptote. Finally, click on the graph-a-function button.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To sketch the graph of the function \( f(x) = \frac{-16}{x^{2}-2x-8} \), we first need to find the vertical and horizontal asymptotes. The vertical asymptotes occur where the denominator is zero. To find these points, set \( x^2 - 2x - 8 = 0 \), which factors to \( (x-4)(x+2) = 0 \). Thus, the vertical asymptotes are at \( x = 4 \) and \( x = -2 \). Next, to find the horizontal asymptote, we note the degrees of the polynomial in the numerator and the denominator. Since the numerator is a constant and the denominator is a quadratic, the horizontal asymptote is at \( y = 0 \). For the intercepts, set \( f(x) = 0 \). Since the numerator is -16, there are no x-intercepts. For the y-intercept, substitute \( x = 0 \) into the function: \[ f(0) = \frac{-16}{0 - 0 - 8} = \frac{-16}{-8} = 2. \] Thus, the y-intercept is at \( (0, 2) \). To check values on each side of the vertical asymptotes: - For \( x < -2 \), pick \( x = -3 \): \[ f(-3) = \frac{-16}{9 + 6 - 8} = \frac{-16}{7} \approx -2.29. \] - For \( -2 < x < 4 \), choose \( x = 0 \): \[ f(0) = 2. \] - For \( x > 4 \), opt for \( x = 5 \): \[ f(5) = \frac{-16}{25 - 10 - 8} = \frac{-16}{7} \approx -2.29. \] Now you have the asymptotes, a y-intercept, and some plotted points to create a rough sketch of the graph! Happy graphing!