Simplify \( \frac{25 x^{9} y^{4}}{15 x^{6} y^{8}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify \( \frac{25 x^{9} y^{4}}{15 x^{6} y^{8}} \), we can first simplify the coefficient. The greatest common divisor (GCD) of 25 and 15 is 5. Dividing both by 5 gives us: \[ \frac{25}{15} = \frac{5}{3} \] Next, we simplify the variable parts. For \(x\): \[ \frac{x^{9}}{x^{6}} = x^{9-6} = x^{3} \] For \(y\): \[ \frac{y^{4}}{y^{8}} = y^{4-8} = y^{-4} \] Putting it all together, we have: \[ \frac{5}{3} x^{3} y^{-4} \] Since \(y^{-4}\) means \( \frac{1}{y^{4}} \), we can rewrite it as: \[ \frac{5 x^{3}}{3 y^{4}} \] Thus, the simplified form is: \[ \frac{5 x^{3}}{3 y^{4}} \]