QUESTION \( 7 \cdot 1 \) POINT Multiply: \( \frac{6 d+60}{11 d+121} \cdot \frac{d^{2}+15 d+44}{d^{2}+17 d+70} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To simplify the expression \( \frac{6 d+60}{11 d+121} \cdot \frac{d^{2}+15 d+44}{d^{2}+17 d+70} \), we can factor each of the polynomials involved. First, factor \( 6d + 60 \) as \( 6(d + 10) \) and \( 11d + 121 \) as \( 11(d + 11) \). Next, for \( d^2 + 15d + 44 \), we can factor it as \( (d + 4)(d + 11) \) (since \( 4 \) and \( 11 \) add up to \( 15 \) and multiply to \( 44 \)). On the other hand, \( d^2 + 17d + 70 \) can be factored as \( (d + 7)(d + 10) \) (since \( 7 \) and \( 10 \) add up to \( 17 \) and multiply to \( 70 \)). So, the expression now looks like: \[ \frac{6(d + 10)}{11(d + 11)} \cdot \frac{(d + 4)(d + 11)}{(d + 7)(d + 10)} \] You can cancel out \( (d + 10) \) from the numerator and denominator, and \( (d + 11) \) as well: \[ = \frac{6(d + 4)}{11(d + 7)} \] Thus, the final simplified form of the expression is: \[ \frac{6(d + 4)}{11(d + 7)} \]