Pregunta
upstudy study bank question image url

\( \left. \begin{array} { c c c c c c c c } { X } & { 1 } & { 2 } & { 3 } & { 4 } & { 5 } & { 6 } & { 7 } \\ { P ( X ) } & { \frac { 1 } { 7 } } & { \frac { 1 } { 7 } } & { \frac { 1 } { 7 } } & { \frac { 1 } { 7 } } & { \frac { 1 } { 7 } } & { \frac { 1 } { 7 } } & { \frac { 1 } { 7 } } \end{array} \right. \)

Ask by Rojas Hanson. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The table shows that the random variable \( X \) takes values from 1 to 7, each with an equal probability of \( \frac{1}{7} \). This is a discrete uniform distribution where each outcome is equally likely. The expected value is 4, the variance is 4, and the standard deviation is 2.

Solución

The table you've provided represents a **discrete uniform probability distribution** for the random variable \( X \). Let's break down and analyze this distribution in detail. ### Given Probability Distribution \[ \begin{array}{c|ccccccc} X & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline P(X) & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \end{array} \] ### Key Characteristics 1. **Discrete Uniform Distribution**: - **Discrete**: \( X \) takes on a finite number of distinct values. - **Uniform**: Each outcome has an equal probability of occurrence. 2. **Support of \( X \)**: - The random variable \( X \) can take any integer value from 1 to 7, inclusive. 3. **Probability Mass Function (PMF)**: - For each \( x \in \{1, 2, 3, 4, 5, 6, 7\} \), \( P(X = x) = \frac{1}{7} \). ### Verification of Probability Distribution To confirm that this is a valid probability distribution, the sum of all probabilities should equal 1: \[ \sum_{x=1}^{7} P(X = x) = 7 \times \frac{1}{7} = 1 \] This satisfies the requirement for a probability distribution. ### Calculating Key Statistics 1. **Expected Value (Mean)**: The expected value \( E(X) \) of a discrete uniform distribution is given by: \[ E(X) = \frac{a + b}{2} \] where \( a \) and \( b \) are the minimum and maximum values of \( X \), respectively. For this distribution: \[ E(X) = \frac{1 + 7}{2} = 4 \] 2. **Variance**: The variance \( \text{Var}(X) \) measures the spread of the distribution and is given by: \[ \text{Var}(X) = \frac{(b - a + 1)^2 - 1}{12} \] Plugging in the values: \[ \text{Var}(X) = \frac{(7 - 1 + 1)^2 - 1}{12} = \frac{7^2 - 1}{12} = \frac{49 - 1}{12} = \frac{48}{12} = 4 \] 3. **Standard Deviation**: The standard deviation \( \sigma_X \) is the square root of the variance: \[ \sigma_X = \sqrt{\text{Var}(X)} = \sqrt{4} = 2 \] 4. **Probability Generating Function (PGF)**: The PGF \( G_X(t) \) for a discrete random variable is: \[ G_X(t) = E(t^X) = \sum_{x=1}^{7} P(X = x) t^x = \frac{1}{7}(t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7) \] ### Applications and Examples Such uniform distributions are common in scenarios where each outcome is equally likely. Examples include: - **Rolling a Fair Die**: A standard die has outcomes \( \{1, 2, 3, 4, 5, 6\} \), each with probability \( \frac{1}{6} \). Your distribution extends this idea to seven outcomes. - **Random Selection**: Picking a random day from a week (if considering an extra day or specific scenarios). ### Potential Questions and Extensions Depending on your interest or application, here are some extensions or related questions you might consider: 1. **Cumulative Distribution Function (CDF)**: - Calculate \( P(X \leq x) \) for each \( x \). 2. **Moment Generating Function (MGF)**: - Determine the MGF and use it to find moments of \( X \). 3. **Comparisons with Other Distributions**: - Compare the uniform distribution with other discrete distributions like binomial or Poisson. 4. **Applications in Real-World Scenarios**: - Explore how this distribution can model real-life situations where outcomes are equally likely. If you have a specific question or need further assistance regarding this probability distribution, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the provided table represents a uniform probability distribution? In this case, each outcome (from 1 to 7) has an equal probability of occurring, which is \( \frac{1}{7} \). This type of distribution is commonly used in scenarios like rolling a fair die, where each face has the same likelihood of appearing! When working with uniform distributions, one common mistake is forgetting that the total probability must equal 1. Since there are 7 possible outcomes, you need to ensure that when you sum all individual probabilities, it equals \( 1 \). So here, \( 7 \times \frac{1}{7} = 1 \). Always double-check your sums to avoid that rookie error!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad