Pregunta
upstudy study bank question image url

through: \( (1,-1) \), parallel to \( y=x-4 \)

Ask by Mckenzie Mccarthy. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = x - 2 \).

Solución

To find the equation of a line that **passes through the point \((1, -1)\)** and is **parallel to the line \(y = x - 4\)**, follow these steps: 1. **Determine the slope of the given line:** The equation \(y = x - 4\) is in the slope-intercept form \(y = mx + b\), where: - \(m\) is the slope. - \(b\) is the y-intercept. For \(y = x - 4\), the slope \(m = 1\). 2. **Use the slope-point form for the new line:** Since parallel lines have the **same slope**, the slope of the new line will also be \(1\). The **point-slope form** of a line is: \[ y - y_1 = m(x - x_1) \] Where \((x_1, y_1)\) is a point on the line and \(m\) is the slope. Plugging in the slope \(m = 1\) and the point \((1, -1)\): \[ y - (-1) = 1(x - 1) \] Simplifying: \[ y + 1 = x - 1 \] \[ y = x - 2 \] 3. **Final Equation:** The equation of the line parallel to \(y = x - 4\) and passing through \((1, -1)\) is: \[ \boxed{y = x - 2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the equation of the line that goes through the point \( (1, -1) \) and is parallel to the line \( y = x - 4 \), we first note that parallel lines have the same slope. The slope of the given line can be extracted as \( 1 \) (since it's in the form \( y = mx + b \), where \( m \) is the slope). Using the point-slope form of a line, \( y - y_1 = m(x - x_1) \), where \( (x_1, y_1) \) is the point \( (1, -1) \) and \( m = 1 \): \[ y - (-1) = 1(x - 1) \] This simplifies to: \[ y + 1 = x - 1 \] or, rearranging for slope-intercept form: \[ y = x - 2 \] So, the equation of the line through \( (1, -1) \) that is parallel to \( y = x - 4 \) is \( y = x - 2 \). For a bit of fun, did you know that parallel lines in mathematics can often remind us of relationships in real life? Just like good friends who keep the same vibe regardless of where they go! They never meet, no matter how far you extend them, just like your bestie waiting for you at your favorite café, always keeping the same distance. As for further applications, knowing how to find parallel lines is essential in various fields, such as engineering and architecture. Whether you're designing a new building or drafting a floor plan, understanding the concept of parallel lines helps ensure structural integrity and aesthetic appeal. So, the next time you’re laying down a design, remember: parallel lines are your best pals in keeping things neat and orderly!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad