Pregunta
upstudy study bank question image url

17 Malfpie Choire 5 points You invested \( \$ 1500 \) into an account with an annual percentage rate of \( 6 \% \) compounded annually. You plan to ketp the money in the account for the next 10 years Consider the function that relates the time and the amount of money in the account. Which is the most appropriate range? \[ \begin{array}{l}x \geq 0 \\ y \geq 1500 \\ 0 \leq x \leq 10 \\ 1500 \leq y \leq 2686\end{array} \]

Ask by Pena Mcfarlane. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The range of the function is all y with 1500 ≤ y ≤ 2686.

Solución

To determine the most appropriate **range** for the function that models your investment, let's analyze the given information: 1. **Initial Investment (Principal), \( P \):** \$1500 2. **Annual Interest Rate, \( r \):** 6% (or 0.06 as a decimal) 3. **Time, \( t \):** 10 years 4. **Compounding:** Annually The compound interest formula is: \[ y = P \times (1 + r)^x \] Where: - \( y \) is the amount of money after \( x \) years. - \( x \) is the time in years. Plugging in the known values: \[ y = 1500 \times (1 + 0.06)^x = 1500 \times 1.06^x \] **Calculating the Amount After 10 Years:** \[ y = 1500 \times 1.06^{10} \approx 1500 \times 1.79085 \approx 2686.28 \] **Range Analysis:** - **Initial Amount:** The smallest value \( y \) can be is the initial investment, \$1500. - **After 10 Years:** The largest value \( y \) can reach is approximately \$2686. Therefore, the **range** of the function \( y \) over the 10-year period is: \[ 1500 \leq y \leq 2686 \] **Conclusion:** The most appropriate range for the function, considering the 10-year investment period, is: **\( 1500 \leq y \leq 2686 \)** **Answer:** The range is all y with 1500 ≤ y ≤ 2686

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When investing in an account with compound interest, it's super important to grasp how your money grows over time! The formula for compound interest is \( A = P(1 + r)^t \), where \( A \) is the amount after time \( t \), \( P \) is the principal amount (initial investment), \( r \) is the interest rate, and \( t \) is the number of years the money is invested or borrowed. In your case, after 10 years, your investment will accrue interest and you'll see it blossom to around \( \$ 2686 \). In practical terms, understanding the range of your investment can help set realistic expectations. With the parameters provided, the account's balance starts at \( \$ 1500 \) and climbs to \( \$ 2686 \) over those 10 years. This insight is crucial for setting future financial goals, like saving for a savvy purchase or ensuring you're on the right path towards your financial ambitions, all thanks to the magic of compound interest!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad