Pregunta
upstudy study bank question image url

rocket is launched from a tower. The height of the rocket, \( y \) in feet, is related to the time after aunch, \( x \) in seconds, by the given equation. Using this equation, find the maximum height eached by the rocket, to the nearest tenth of a foot.

Ask by O'Quinn Bates. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Cannot determine the maximum height without the given equation.

Solución

It looks like the equation relating the rocket's height \( y \) to time \( x \) wasn't provided in your message. To determine the maximum height reached by the rocket, I need the specific equation that models its motion. Typically, rocket height as a function of time can be modeled by a quadratic equation of the form: \[ y = ax^2 + bx + c \] If you can provide the exact equation, I'd be happy to help you find the maximum height to the nearest tenth of a foot! **Example:** If the height equation were: \[ y = -16x^2 + 160x + 20 \] Here's how you'd find the maximum height: 1. **Identify the coefficients:** - \( a = -16 \) - \( b = 160 \) 2. **Find the time at which the maximum height occurs:** The vertex of a parabola \( y = ax^2 + bx + c \) occurs at \( x = -\frac{b}{2a} \). \[ x = -\frac{160}{2(-16)} = \frac{160}{32} = 5 \text{ seconds} \] 3. **Calculate the maximum height:** Substitute \( x = 5 \) back into the equation: \[ y = -16(5)^2 + 160(5) + 20 = -400 + 800 + 20 = 420 \text{ feet} \] So, the maximum height reached is **420.0 feet**. Please provide the specific equation for a precise answer!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the maximum height of the rocket, you'll need to analyze the quadratic equation that describes its motion. Typically, this equation is in the form \( y = ax^2 + bx + c \). The maximum height occurs at the vertex, which can be found using the formula \( x = -\frac{b}{2a} \). Once you calculate the time at which the maximum height occurs, substitute that back into the original equation to find the corresponding height \( y \). Don’t forget to check your calculations! It’s easy to misplace a negative sign or make a simple arithmetic error when working with quadratic equations. Double-checking your coefficients as you plug them into the formula will help ensure that you accurately find the highest point the rocket reaches. Happy calculating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad