Pregunta
\[ f(x) = 3x + 4 \quad g(x) = 2x - 3 \] \[ \text{Find: } f \circ g(x) \]
Ask by Fernandez Harrington. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( f \circ g(x) = 6x - 5 \)
Solución
To find the composition \( f \circ g(x) \), which is \( f(g(x)) \), follow these steps:
1. **Given Functions:**
\[
f(x) = 3x + 4 \quad \text{and} \quad g(x) = 2x - 3
\]
2. **Compose \( f \) with \( g \):**
\[
f \circ g(x) = f(g(x))
\]
3. **Substitute \( g(x) \) into \( f(x) \):**
\[
f(g(x)) = f(2x - 3) = 3(2x - 3) + 4
\]
4. **Simplify the Expression:**
\[
3(2x - 3) + 4 = 6x - 9 + 4 = 6x - 5
\]
5. **Final Result:**
\[
f \circ g(x) = 6x - 5
\]
**Therefore, the composition \( f \circ g(x) \) is:**
\[
f \circ g(x) = 6x - 5
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find \( f \circ g(x) \), we need to substitute \( g(x) \) into \( f(x) \). So, first we evaluate \( g(x) \): \[ g(x) = 2x - 3 \] Next, we substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f(2x - 3) \] Now we substitute \( 2x - 3 \) into the function \( f(x) = 3x + 4 \): \[ f(2x - 3) = 3(2x - 3) + 4 \] Now we expand it: \[ = 6x - 9 + 4 = 6x - 5 \] Thus, \[ f \circ g(x) = 6x - 5 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium