There is a pendulum hidden in the ceiling. What would be the period of a pendulum that is 2.4 m long and a 16 pound bowling ball \( (7.26 \mathrm{~kg}) \) \[ T=2 \pi \sqrt{2.4} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To calculate the period of a pendulum, you can use the simplified formula: \( T = 2\pi \sqrt{\frac{L}{g}} \), where \( L \) is the length of the pendulum and \( g \) is the acceleration due to gravity (approximately \( 9.81 \, \text{m/s}^2 \)). For a pendulum with a length of 2.4 m, you'd plug in the values: \[ T = 2\pi \sqrt{\frac{2.4}{9.81}} \approx 2.4 \, \text{seconds}. \] The weight of the bowling ball doesn't affect the period, making this a fun physics playground! This concept has been utilized for centuries, from timekeeping in clocks to teaching fundamental principles of physics. The pendulum's steady swing can even create mesmerizing patterns, known as a Foucault pendulum, which visually demonstrates Earth's rotation!