Divide. Express your answer in standard form. \( \frac{-4 i}{1+i} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To divide the complex numbers, we multiply both the numerator and the denominator by the conjugate of the denominator, which in this case is \(1 - i\): \[ \frac{-4i}{1+i} \cdot \frac{1-i}{1-i} = \frac{-4i(1-i)}{(1+i)(1-i)} \] Calculating the denominator: \[ (1+i)(1-i) = 1^2 - i^2 = 1 - (-1) = 1 + 1 = 2 \] Now calculating the numerator: \[ -4i(1-i) = -4i + 4i^2 = -4i - 4 \quad (\text{since } i^2 = -1) \] Combining gives us: \[ -4 - 4i \] Thus, we have: \[ \frac{-4 - 4i}{2} = -2 - 2i \] Now expressing this in standard form, we have: \[ -2 - 2i \] So, the final answer is: \[ -2 - 2i \]