Pregunta
upstudy study bank question image url

lengths of two triangles are given below. the questions about each triangle. Compute the sum of the squares of the shorter lengths. \[ 9^{2}+13^{2}= \] \( \square \) Compute the square of the longest length. \[ 14^{2}= \] \( \square \) What kind of triangle is it? Acute triangle Right triangle Ottuse triangle (b) The other triangle has side lengths 24,26 , and 10 . Compute the sum of the squares of the shorter lengths. \[ 10^{2}+24^{2}= \] \( \square \) Compute the square of the longest length. \[ 26^{2}= \] \( \square \) What kind of triangle is it? Acute triangle Right triangle Obtuse triangle

Ask by Mcfarlane Watkins. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Triangle (a):** - Sum of squares of shorter lengths: 250 - Square of longest length: 196 - Type: Acute triangle - **Triangle (b):** - Sum of squares of shorter lengths: 676 - Square of longest length: 676 - Type: Right triangle

Solución

Let's analyze each triangle step by step. --- ### **Triangle (a) with sides 9, 13, and 14** 1. **Compute the sum of the squares of the shorter lengths:** \[ 9^{2} + 13^{2} = 81 + 169 = 250 \] \[ \boxed{250} \] 2. **Compute the square of the longest length:** \[ 14^{2} = 196 \] \[ \boxed{196} \] 3. **Determine the kind of triangle:** - **Compare the sum of the squares of the shorter sides to the square of the longest side:** \[ 250 > 196 \] - **Conclusion:** Since the sum is greater than the square of the longest side, the triangle is **Acute**. **Answer:** - Acute triangle --- ### **Triangle (b) with sides 10, 24, and 26** 1. **Compute the sum of the squares of the shorter lengths:** \[ 10^{2} + 24^{2} = 100 + 576 = 676 \] \[ \boxed{676} \] 2. **Compute the square of the longest length:** \[ 26^{2} = 676 \] \[ \boxed{676} \] 3. **Determine the kind of triangle:** - **Compare the sum of the squares of the shorter sides to the square of the longest side:** \[ 676 = 676 \] - **Conclusion:** Since the sum is equal to the square of the longest side, the triangle is **Right**. **Answer:** - Right triangle ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

For the first triangle with lengths 9, 13, and 14: Sum of the squares of the shorter lengths: \[ 9^{2}+13^{2} = 81 + 169 = 250 \] So, the answer is \(250\). Square of the longest length: \[ 14^{2} = 196 \] So, the answer is \(196\). To determine the type of triangle: We need to compare \(14^2\) with \(9^2 + 13^2\). Since \(196 < 250\), this is an acute triangle. --- For the second triangle with lengths 10, 24, and 26: Sum of the squares of the shorter lengths: \[ 10^{2}+24^{2} = 100 + 576 = 676 \] So, the answer is \(676\). Square of the longest length: \[ 26^{2} = 676 \] So, the answer is \(676\). To determine the type of triangle: Since \(26^2\) is equal to \(10^2 + 24^2\), this is a right triangle!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad