2. (This is the same problem as \( \# 11 \) above, but with one small difference.) Matthew had \( 2 / 3 \) as much money as John. Then John gave Matthew \( \$ 5 \) for one of Matthew's sandwiches. Now the ratio of Matthew's money to John's money is \( 7: 8 \). How much money did John have in the beginning?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve this problem, let’s use algebra. Let \( J \) represent the initial amount of money that John had. Then Matthew initially had \( \frac{2}{3} J \). After John gives Matthew \$5, Matthew’s new amount of money becomes \( \frac{2}{3} J + 5 \), and John's new amount becomes \( J - 5 \). According to the problem, the new ratio of their money is \( 7:8 \). We can express this as: \[ \frac{\frac{2}{3} J + 5}{J - 5} = \frac{7}{8} \] Now we’ll cross-multiply: \[ 8\left(\frac{2}{3} J + 5\right) = 7(J - 5) \] \[ \frac{16}{3} J + 40 = 7J - 35 \] Next, multiply everything by 3 to eliminate the fraction: \[ 16J + 120 = 21J - 105 \] Now, rearranging brings: \[ 120 + 105 = 21J - 16J \] \[ 225 = 5J \] \[ J = 45 \] So, John initially had \( \$45 \).