Responder
The graph represents the inequalities \( y > \frac{1}{4}x + 2 \) and \( y < x + 2 \).
Solución
To determine which inequality the graph represents, let's analyze the given set of inequalities:
\[
\begin{array}{l}
1. \quad y < x + 2 \\
2. \quad y > x + 2 \\
3. \quad y < \frac{1}{4}x + 2 \\
4. \quad y > \frac{1}{4}x + 2 \\
\end{array}
\]
Assuming there's a typo in the fourth inequality (changing \( z \) to \( x \)), we can consider the inequalities as:
\[
\begin{array}{l}
1. \quad y < x + 2 \quad \text{(Region below the line \( y = x + 2 \))} \\
2. \quad y > x + 2 \quad \text{(Region above the line \( y = x + 2 \))} \\
3. \quad y < \frac{1}{4}x + 2 \quad \text{(Region below the line \( y = \frac{1}{4}x + 2 \))} \\
4. \quad y > \frac{1}{4}x + 2 \quad \text{(Region above the line \( y = \frac{1}{4}x + 2 \))} \\
\end{array}
\]
### Understanding the Graph
1. **Boundary Lines:**
- **\( y = x + 2 \):** This is a straight line with a slope of 1 and a y-intercept at (0, 2).
- **\( y = \frac{1}{4}x + 2 \):** This line has a gentler slope of \( \frac{1}{4} \) and the same y-intercept at (0, 2).
2. **Shading Regions:**
- **\( y < x + 2 \):** Shaded area below the line \( y = x + 2 \).
- **\( y > x + 2 \):** Shaded area above the line \( y = x + 2 \).
- **\( y < \frac{1}{4}x + 2 \):** Shaded area below the line \( y = \frac{1}{4}x + 2 \).
- **\( y > \frac{1}{4}x + 2 \):** Shaded area above the line \( y = \frac{1}{4}x + 2 \).
### Possible Scenarios
- **Single Inequality Representation:**
- If the graph shows a single shaded region relative to one boundary line, it represents one of the four inequalities listed above.
- **System of Inequalities:**
- If the graph shows an intersection of two shaded regions (creating a bounded area), it likely represents a system of two inequalities.
- For example, if the shaded area is between \( y = \frac{1}{4}x + 2 \) and \( y = x + 2 \), the system would be:
\[
\frac{1}{4}x + 2 < y < x + 2
\]
Which corresponds to:
\[
y > \frac{1}{4}x + 2 \quad \text{and} \quad y < x + 2
\]
### Conclusion
Without seeing the specific graph, the most comprehensive interpretation is that it represents a **system of inequalities** where \( y \) is bounded between \( \frac{1}{4}x + 2 \) and \( x + 2 \). Therefore, the graph likely represents:
\[
\frac{1}{4}x + 2 < y < x + 2
\]
**Or equivalently:**
\[
y > \frac{1}{4}x + 2 \quad \text{and} \quad y < x + 2
\]
This means the graph shades the region **above** the line \( y = \frac{1}{4}x + 2 \) **and below** the line \( y = x + 2 \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución