Pregunta
upstudy study bank question image url

What inequality does the graph represent? \( \begin{array}{l}yx+2 \\ y<\frac{1}{4} x+2 \\ y>\frac{1}{4} z+2\end{array} \)

Ask by King Park. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph represents the inequalities \( y > \frac{1}{4}x + 2 \) and \( y < x + 2 \).

Solución

To determine which inequality the graph represents, let's analyze the given set of inequalities: \[ \begin{array}{l} 1. \quad y < x + 2 \\ 2. \quad y > x + 2 \\ 3. \quad y < \frac{1}{4}x + 2 \\ 4. \quad y > \frac{1}{4}x + 2 \\ \end{array} \] Assuming there's a typo in the fourth inequality (changing \( z \) to \( x \)), we can consider the inequalities as: \[ \begin{array}{l} 1. \quad y < x + 2 \quad \text{(Region below the line \( y = x + 2 \))} \\ 2. \quad y > x + 2 \quad \text{(Region above the line \( y = x + 2 \))} \\ 3. \quad y < \frac{1}{4}x + 2 \quad \text{(Region below the line \( y = \frac{1}{4}x + 2 \))} \\ 4. \quad y > \frac{1}{4}x + 2 \quad \text{(Region above the line \( y = \frac{1}{4}x + 2 \))} \\ \end{array} \] ### Understanding the Graph 1. **Boundary Lines:** - **\( y = x + 2 \):** This is a straight line with a slope of 1 and a y-intercept at (0, 2). - **\( y = \frac{1}{4}x + 2 \):** This line has a gentler slope of \( \frac{1}{4} \) and the same y-intercept at (0, 2). 2. **Shading Regions:** - **\( y < x + 2 \):** Shaded area below the line \( y = x + 2 \). - **\( y > x + 2 \):** Shaded area above the line \( y = x + 2 \). - **\( y < \frac{1}{4}x + 2 \):** Shaded area below the line \( y = \frac{1}{4}x + 2 \). - **\( y > \frac{1}{4}x + 2 \):** Shaded area above the line \( y = \frac{1}{4}x + 2 \). ### Possible Scenarios - **Single Inequality Representation:** - If the graph shows a single shaded region relative to one boundary line, it represents one of the four inequalities listed above. - **System of Inequalities:** - If the graph shows an intersection of two shaded regions (creating a bounded area), it likely represents a system of two inequalities. - For example, if the shaded area is between \( y = \frac{1}{4}x + 2 \) and \( y = x + 2 \), the system would be: \[ \frac{1}{4}x + 2 < y < x + 2 \] Which corresponds to: \[ y > \frac{1}{4}x + 2 \quad \text{and} \quad y < x + 2 \] ### Conclusion Without seeing the specific graph, the most comprehensive interpretation is that it represents a **system of inequalities** where \( y \) is bounded between \( \frac{1}{4}x + 2 \) and \( x + 2 \). Therefore, the graph likely represents: \[ \frac{1}{4}x + 2 < y < x + 2 \] **Or equivalently:** \[ y > \frac{1}{4}x + 2 \quad \text{and} \quad y < x + 2 \] This means the graph shades the region **above** the line \( y = \frac{1}{4}x + 2 \) **and below** the line \( y = x + 2 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To analyze the graph represented by those inequalities, you'll notice that \( y < x + 2 \) and \( y > x + 2 \) depict regions above and below the line \( y = x + 2 \). The other inequalities, \( y < \frac{1}{4} x + 2 \) and \( y > \frac{1}{4} z + 2 \) (assuming \( z \) is a typo and should be \( x \)), also indicate similar boundary lines with different slopes. Overall, when graphing these inequalities, look for the intersections of the shaded regions to determine the correct combination of inequalities that describe the overall graph! For problem-solving, common mistakes often arise from misinterpreting the direction of the inequalities when drawing the regions. Always remember to shade the correct side of the boundary lines based on the "less than" or "greater than" signs. Additionally, double-check if all variables are consistently labeled (e.g., using \( x \) instead of switching to \( z \)) to avoid confusion in your calculations and graphing!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad