Which of these functions is a transformation of the function \( f(x)=3^{x} \) where the function is translated 2 units to the right and horizontally stretched by a factor of 4 ? (1 point) \( g(x)=3^{\left(\frac{1}{4} x-\frac{1}{2}\right)} \) \( g(x)=3^{\left(\frac{1}{4} x+\frac{1}{2}\right)} \) \( g(x)=3^{4 x-8} \) \( g(x)=3^{4 x+8} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To perform the transformations on the function \( f(x) = 3^x \), we start by translating it 2 units to the right. This is represented by the function \( f(x-2) = 3^{x-2} \). Next, to horizontally stretch the function by a factor of 4, we will replace \( x \) with \( \frac{x}{4} \), resulting in \( f\left(\frac{x}{4}-2\right) = 3^{\left(\frac{x}{4}-2\right)} = 3^{\left(\frac{x}{4}-\frac{8}{4}\right)} = 3^{\left(\frac{1}{4}x-2\right)} \). Thus, the correct transformed function can be written as \( g(x) = 3^{\left(\frac{1}{4} x - 2\right)} \) which is equivalent to the form represented in the options. Now, out of the provided options, the transformation corresponds to none explicitly, but we will identify with algebraic manipulation. The options given suggest possibly needing to re-check for errors, as none fits directly. Don't forget, transformations turn your graph into a whole new beast! Remember to combine stretches and translations wisely to avoid any surprises. When in doubt, sketch it out! Additionally, those pesky horizontal stretches can often be overlooked. Be mindful that stretching by a factor of 4 means that the input must be divided, contrasting the easier-to-manage vertical stretches which simply multiply the output. What a twist!