Pregunta
upstudy study bank question image url

What percentage of the general U.S. population are high-school dropouts? The Statistical Abstract of the United States, 120 th Edition, gives the percentage of high-school dropouts by state. For convenience, the data are sorted in increasing order. \[ \begin{array}{c} 5,6,7,7,7,7,8,8,8,8,8,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,11,11,11,11,11,11 \\ 11,11,12,12,12,12,13,13,13,13,13,13,14,14,14,14,14,15 \end{array} \] (a) Which percentile is the value 10 ? (Round to the nearest whole value above.) 10 is the \( \square \) th percentile. (b) Find the 95th percentile on the data. Locator \( = \) \( \square \) \[ 95 \text { th percentile }=14 \] (c) Find the \( Q_{1} \) value on the data. \[ \text { Locator }=13 \] \[ Q_{1}=9 \] (d) Find the Q3 value on the data. \[ \text { Locator }=\square \] \[ Q_{3}=12 \] (e) Find the \( Q_{2} \) value on the data. \[ Q_{2}=10 \] (f) Find the IQR of the data. \[ I Q R=3 \] (g) What are the Upper and Lower limits of the boxplot? \[ \text { Upper Limit }=16.5 \] Lower Limit \( =4.5 \) (b) With five-number-summary (in the order Min = Q1 - Q2 - Q3 - Max) being 5-9-10 = 12 15, are there any outliers? The only outlier is 5 The only outlier is 15 Outliers are 15 , and 14 Outliers are 5, and 15. o No outliers

Ask by Evans Wheeler. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- (a) 10 is the 40th percentile. - (b) 95th percentile = 14. - (c) \( Q_1 = 9 \). - (d) \( Q_3 = 12 \). - (e) \( Q_2 = 10 \). - (f) IQR = 3. - (g) Upper Limit = 16.5, Lower Limit = 4.5. - Outliers: Only 5 is an outlier.

Solución

Let's solve the problem step by step, addressing each part clearly. ### Given Data The data set of high-school dropout percentages is: \[ 5, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15 \] ### (a) Which percentile is the value 10? To find the percentile of a value in a data set, we use the formula: \[ P = \left( \frac{N_L}{N} \right) \times 100 \] where \( N_L \) is the number of values less than the given value, and \( N \) is the total number of values. 1. Count the number of values less than 10: - Values less than 10: \( 5, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9 \) (total of 18 values) 2. Total number of values \( N = 45 \). Now, calculate the percentile: \[ P = \left( \frac{18}{45} \right) \times 100 = 40 \] Thus, 10 is the \( 40 \)th percentile. ### (b) Find the 95th percentile on the data. To find the 95th percentile, we calculate the locator: \[ L = \frac{95}{100} \times (N + 1) = 0.95 \times 46 = 43.7 \] Since we round up, we take the 44th value in the ordered list. The 44th value is \( 14 \). ### (c) Find the \( Q_1 \) value on the data. To find \( Q_1 \): \[ L = \frac{25}{100} \times (N + 1) = 0.25 \times 46 = 11.5 \] Rounding up gives us the 12th value, which is \( 9 \). ### (d) Find the \( Q_3 \) value on the data. To find \( Q_3 \): \[ L = \frac{75}{100} \times (N + 1) = 0.75 \times 46 = 34.5 \] Rounding up gives us the 35th value, which is \( 12 \). ### (e) Find the \( Q_2 \) value on the data. The median \( Q_2 \) is the 23rd value: \[ Q_2 = 10 \] ### (f) Find the IQR of the data. The Interquartile Range (IQR) is calculated as: \[ IQR = Q_3 - Q_1 = 12 - 9 = 3 \] ### (g) What are the Upper and Lower limits of the boxplot? The limits are calculated as follows: - Upper Limit: \( Q_3 + 1.5 \times IQR = 12 + 1.5 \times 3 = 12 + 4.5 = 16.5 \) - Lower Limit: \( Q_1 - 1.5 \times IQR = 9 - 1.5 \times 3 = 9 - 4.5 = 4.5 \) ### Outliers To determine outliers, we check values outside the limits: - Outliers are values below \( 4.5 \) or above \( 16.5 \). - The only outlier is \( 5 \) (since all other values are within the limits). ### Summary of Answers - (a) 10 is the \( 40 \)th percentile. - (b) 95th percentile = \( 14 \). - (c) \( Q_1 = 9 \). - (d) \( Q_3 = 12 \). - (e) \( Q_2 = 10 \). - (f) \( IQR = 3 \). - (g) Upper Limit = \( 16.5 \), Lower Limit = \( 4.5 \). - Outliers: The only outlier is \( 5 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

In the realm of high school education in the U.S., dropout rates can paint a vivid picture of various societal trends and challenges. For instance, states with higher dropout rates often face economic challenges, less access to quality education, or socioeconomic obstacles. Understanding these nuances helps us appreciate the complex dynamics influencing student retention and success. Moreover, analyzing dropout rates can lead to actionable solutions in real-world scenarios. For example, targeting resources and support programs in areas with high dropout percentages can significantly improve educational outcomes. Schools and communities can foster mentoring programs, tutoring, and engagement initiatives to keep students on track, showcasing how data can drive positive change!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad