Pregunta
Multiply and simplify. \[ (\sqrt{x}-\sqrt{2})(\sqrt{x}+\sqrt{2})=\square \]
Ask by Bowers Gray. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\(x - 2\)
Solución
To multiply and simplify the expression \((\sqrt{x} - \sqrt{2})(\sqrt{x} + \sqrt{2})\), you can use the difference of squares formula:
\[
(a - b)(a + b) = a^2 - b^2
\]
Here, \(a = \sqrt{x}\) and \(b = \sqrt{2}\). Applying the formula:
\[
(\sqrt{x} - \sqrt{2})(\sqrt{x} + \sqrt{2}) = (\sqrt{x})^2 - (\sqrt{2})^2
\]
Simplify the squares:
\[
x - 2
\]
**Answer:** \(x - 2\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
Sure! When you multiply the expression \((\sqrt{x}-\sqrt{2})(\sqrt{x}+\sqrt{2})\), you can use the difference of squares formula, which states that \( (a - b)(a + b) = a^2 - b^2 \). In this case, let \( a = \sqrt{x} \) and \( b = \sqrt{2} \). So, we have: \[ (\sqrt{x}-\sqrt{2})(\sqrt{x}+\sqrt{2}) = (\sqrt{x})^2 - (\sqrt{2})^2 \] Calculating the squares gives us: \[ x - 2 \] Thus, the simplified expression is: \[ x - 2 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium