What are the asymptotic discontinuities of the given rational function below? \( f(x)=\frac{-4}{x^{2}+11 x+10} \) \( x=-1 \) only \( x=-10 \) only \( x=-1 \) and \( x=-10 \) \( x=-5 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To determine the asymptotic discontinuities of the rational function \( f(x)=\frac{-4}{x^{2}+11 x+10} \), we first find the points where the denominator equals zero. The denominator factors to \( (x+1)(x+10) \), which gives us the discontinuities at \( x = -1 \) and \( x = -10 \). Thus, the function has vertical asymptotes at both points, leading us to the conclusion that the asymptotic discontinuities are \( x=-1 \) and \( x=-10 \). Now, let’s explore how these discontinuities manifest in practical situations. Imagine a graph of this function; as x approaches -1 or -10, the function’s value spirals towards positive or negative infinity—creating those dramatic vertical lines you often see in math plots! Understanding these points is essential for sketching the graph accurately and predicting the behavior of the function in various contexts.