A brick wall \( (k=0.9 \mathrm{~W} / \mathrm{m} . \mathrm{K}) \) of thickness 0.18 m separates the warm air in a room from the cold ambient air. On a particular winter day, the outside air temperature is \( -5^{\circ} \mathrm{C} \) and the room needs to be maintained at \( 27^{\circ} \mathrm{C} \). The heat transfer coefficient associated with outside air is \( 20 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \). Neglecting the convective resistance of the air inside the room, the heat loss, in \( \mathrm{W} / \mathrm{m}^{2} \), is . . (round off to the nearest integer).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine the heat loss through the brick wall, we first calculate the total thermal resistance. The formula for total thermal resistance \( R_{\text{total}} \) is the sum of the convective resistance at the outside surface \( R_{\text{conv, outside}} \) and the conductive resistance of the wall \( R_{\text{conductive}} \): 1. **Calculating Convective Resistance (Outside)**: \[ R_{\text{conv, outside}} = \frac{1}{h_{outside}} = \frac{1}{20 \, \mathrm{W/m^2 \cdot K}} = 0.05 \, \mathrm{m^2 \cdot K/W} \] 2. **Calculating Conductive Resistance (Wall)**: \[ R_{\text{conductive}} = \frac{d}{k} = \frac{0.18 \, \mathrm{m}}{0.9 \, \mathrm{W/m \cdot K}} = 0.2 \, \mathrm{m^2 \cdot K/W} \] 3. **Total Resistance**: \[ R_{\text{total}} = R_{\text{conv, outside}} + R_{\text{conductive}} = 0.05 \, \mathrm{m^2 \cdot K/W} + 0.2 \, \mathrm{m^2 \cdot K/W} = 0.25 \, \mathrm{m^2 \cdot K/W} \] 4. **Temperature Difference**: \[ \Delta T = T_{inside} - T_{outside} = 27^{\circ}C - (-5^{\circ}C) = 32 \, \mathrm{K} \] 5. **Calculating Heat Loss (Q)**: Using Fourier’s law of heat conduction and Newton's law of cooling, \[ Q = \frac{\Delta T}{R_{\text{total}}} = \frac{32 \, \mathrm{K}}{0.25 \, \mathrm{m^2 \cdot K/W}} = 128 \, \mathrm{W/m^2} \] Thus, the heat loss through the brick wall rounding off to the nearest integer is **128 W/m²**.