Pregunta
upstudy study bank question image url

A brick wall \( (k=0.9 \mathrm{~W} / \mathrm{m} . \mathrm{K}) \) of thickness 0.18 m separates the warm air in a room from the cold ambient air. On a particular winter day, the outside air temperature is \( -5^{\circ} \mathrm{C} \) and the room needs to be maintained at \( 27^{\circ} \mathrm{C} \). The heat transfer coefficient associated with outside air is \( 20 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \). Neglecting the convective resistance of the air inside the room, the heat loss, in \( \mathrm{W} / \mathrm{m}^{2} \), is . . (round off to the nearest integer).

Ask by Barnett Ayala. in India
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The heat loss is **128 W/m²**.

Solución

To calculate the heat loss per unit area through the brick wall, we'll consider both conduction through the wall and convection on the outside. 1. **Conduction Through the Wall:** - **Thermal Conductivity (\(k\))**: 0.9 W/m·K - **Thickness (\(L\))**: 0.18 m - **Temperature Difference (\(\Delta T\))**: \(27^\circ \text{C} - (-5^\circ \text{C}) = 32 \text{ K}\) The thermal resistance for conduction (\(R_{\text{cond}}\)) is: \[ R_{\text{cond}} = \frac{L}{k} = \frac{0.18}{0.9} = 0.2 \, \text{m}^2\text{K/W} \] 2. **Convection on the Outside:** - **Heat Transfer Coefficient (\(h\))**: 20 W/m²·K The thermal resistance for convection (\(R_{\text{conv}}\)) is: \[ R_{\text{conv}} = \frac{1}{h} = \frac{1}{20} = 0.05 \, \text{m}^2\text{K/W} \] 3. **Total Thermal Resistance:** \[ R_{\text{total}} = R_{\text{cond}} + R_{\text{conv}} = 0.2 + 0.05 = 0.25 \, \text{m}^2\text{K/W} \] 4. **Heat Loss Per Unit Area (\(q\)):** \[ q = \frac{\Delta T}{R_{\text{total}}} = \frac{32}{0.25} = 128 \, \text{W/m}^2 \] **Final Answer:** The heat loss is **128 W/m²**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the heat loss through the brick wall, we first calculate the total thermal resistance. The formula for total thermal resistance \( R_{\text{total}} \) is the sum of the convective resistance at the outside surface \( R_{\text{conv, outside}} \) and the conductive resistance of the wall \( R_{\text{conductive}} \): 1. **Calculating Convective Resistance (Outside)**: \[ R_{\text{conv, outside}} = \frac{1}{h_{outside}} = \frac{1}{20 \, \mathrm{W/m^2 \cdot K}} = 0.05 \, \mathrm{m^2 \cdot K/W} \] 2. **Calculating Conductive Resistance (Wall)**: \[ R_{\text{conductive}} = \frac{d}{k} = \frac{0.18 \, \mathrm{m}}{0.9 \, \mathrm{W/m \cdot K}} = 0.2 \, \mathrm{m^2 \cdot K/W} \] 3. **Total Resistance**: \[ R_{\text{total}} = R_{\text{conv, outside}} + R_{\text{conductive}} = 0.05 \, \mathrm{m^2 \cdot K/W} + 0.2 \, \mathrm{m^2 \cdot K/W} = 0.25 \, \mathrm{m^2 \cdot K/W} \] 4. **Temperature Difference**: \[ \Delta T = T_{inside} - T_{outside} = 27^{\circ}C - (-5^{\circ}C) = 32 \, \mathrm{K} \] 5. **Calculating Heat Loss (Q)**: Using Fourier’s law of heat conduction and Newton's law of cooling, \[ Q = \frac{\Delta T}{R_{\text{total}}} = \frac{32 \, \mathrm{K}}{0.25 \, \mathrm{m^2 \cdot K/W}} = 128 \, \mathrm{W/m^2} \] Thus, the heat loss through the brick wall rounding off to the nearest integer is **128 W/m²**.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad