Pregunta
upstudy study bank question image url

Find the number of terms in the arithmetic sequence \( -5 ;-11 ;-17 ; \ldots ;-491 \) How many terms are there in the arithmetic sequence \( -2 ; \frac{1}{2} ; 3 ; \ldots ; \frac{361}{2} \) ?

Ask by Stephens Bird. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 82 terms in the first sequence and 74 terms in the second sequence.

Solución

Let's solve each arithmetic sequence problem step by step. --- ### **1. Sequence:** \( -5, -11, -17, \ldots, -491 \) **Given:** - First term (\(a_1\)) = -5 - Common difference (\(d\)) = \(-11 - (-5) = -6\) - Last term (\(a_n\)) = -491 **Formula for the \(n\)-th term of an arithmetic sequence:** \[ a_n = a_1 + (n - 1)d \] **Setting up the equation:** \[ -491 = -5 + (n - 1)(-6) \] \[ -491 = -5 - 6n + 6 \] \[ -491 = 1 - 6n \] \[ -6n = -491 - 1 \] \[ -6n = -492 \] \[ n = \frac{-492}{-6} = 82 \] **Number of terms:** **82** --- ### **2. Sequence:** \( -2, \frac{1}{2}, 3, \ldots, \frac{361}{2} \) **Given:** - First term (\(a_1\)) = -2 - Second term = \(\frac{1}{2}\) - Third term = 3 **Finding the common difference (\(d\)):** \[ d = \frac{1}{2} - (-2) = \frac{1}{2} + 2 = \frac{5}{2} \] **Last term (\(a_n\)) = \(\frac{361}{2}\)** **Formula for the \(n\)-th term of an arithmetic sequence:** \[ a_n = a_1 + (n - 1)d \] **Setting up the equation:** \[ \frac{361}{2} = -2 + (n - 1)\left(\frac{5}{2}\right) \] \[ \frac{361}{2} = -\frac{4}{2} + \frac{5(n - 1)}{2} \] \[ \frac{361}{2} + \frac{4}{2} = \frac{5(n - 1)}{2} \] \[ \frac{365}{2} = \frac{5(n - 1)}{2} \] \[ 365 = 5(n - 1) \] \[ n - 1 = 73 \] \[ n = 74 \] **Number of terms:** **74** --- **Final Answers:** 1. **82 terms** in the first sequence. 2. **74 terms** in the second sequence. Answer: 1. 82 terms; 2. 74 terms.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the number of terms in the first arithmetic sequence \( -5, -11, -17, \ldots, -491 \), we first identify the first term \( a = -5 \) and the common difference \( d = -11 - (-5) = -6 \). The \( n \)-th term of an arithmetic sequence can be expressed as: \[ a_n = a + (n-1)d \] Setting \( a_n = -491 \): \[ -491 = -5 + (n-1)(-6) \] Now, let's solve for \( n \): \[ -491 + 5 = (n-1)(-6) \] \[ -486 = (n-1)(-6) \] Dividing both sides by -6: \[ n-1 = \frac{-486}{-6} = 81 \] Thus, \[ n = 81 + 1 = 82 \] So there are **82 terms** in the first arithmetic sequence. For the second arithmetic sequence \( -2, \frac{1}{2}, 3, \ldots, \frac{361}{2} \), we identify the first term \( a = -2 \) and the common difference \( d = \frac{1}{2} - (-2) = \frac{1}{2} + 2 = \frac{5}{2} \). Setting \( a_n = \frac{361}{2} \): \[ \frac{361}{2} = -2 + (n-1)\left(\frac{5}{2}\right) \] Converting -2 into an equivalent fraction: \[ -2 = \frac{-4}{2} \] Now, substituting this in: \[ \frac{361}{2} = \frac{-4}{2} + (n-1)\left(\frac{5}{2}\right) \] \[ \frac{361}{2} + \frac{4}{2} = (n-1)\left(\frac{5}{2}\right) \] \[ \frac{365}{2} = (n-1)\left(\frac{5}{2}\right) \] Multiplying both sides by 2 to eliminate the fraction: \[ 365 = (n-1) \cdot 5 \] Dividing both sides by 5: \[ n-1 = \frac{365}{5} = 73 \] Thus, \[ n = 73 + 1 = 74 \] So there are **74 terms** in the second arithmetic sequence.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad