Pregunta
upstudy study bank question image url

An official major league baseball has a mass of 0.14 kg . A pitcher throws a 40 \( \mathrm{~m} / \mathrm{s} \) fastball which is hit by the batter straight back up the middle at a speed of \( 46 \mathrm{~m} / \mathrm{s} \). What is the impulse of the ball during the collision with the bat? Woint Numeric 1 point If this collision occurs during a time of 0.012 seconds, what is the av force exerted by the bat on the ball? Type your answer.

Ask by Stanley Whittaker. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The impulse of the ball during the collision is 12.04 kg·m/s, and the average force exerted by the bat on the ball is approximately 1003.33 N.

Solución

To solve this problem, we will follow these steps: 1. **Calculate the impulse of the ball during the collision with the bat.** 2. **Calculate the average force exerted by the bat on the ball.** ### Step 1: Calculate the Impulse Impulse (\( J \)) is defined as the change in momentum of an object. It can be calculated using the formula: \[ J = \Delta p = m(v_f - v_i) \] Where: - \( m \) is the mass of the ball (0.14 kg), - \( v_f \) is the final velocity of the ball after being hit (46 m/s), - \( v_i \) is the initial velocity of the ball before being hit (-40 m/s, negative because it is in the opposite direction). Now, we can substitute the values into the formula: \[ J = 0.14 \, \text{kg} \times (46 \, \text{m/s} - (-40 \, \text{m/s})) \] Calculating the change in velocity: \[ v_f - v_i = 46 + 40 = 86 \, \text{m/s} \] Now substituting back into the impulse formula: \[ J = 0.14 \, \text{kg} \times 86 \, \text{m/s} \] Now, let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(0.14\times 86\) - step1: Multiply the numbers: \(12.04\) The impulse of the ball during the collision with the bat is: \[ J = 12.04 \, \text{kg m/s} \] ### Step 2: Calculate the Average Force The average force (\( F \)) exerted by the bat on the ball can be calculated using the formula: \[ F = \frac{J}{\Delta t} \] Where: - \( J \) is the impulse (12.04 kg m/s), - \( \Delta t \) is the time duration of the collision (0.012 seconds). Now we can substitute the values into the formula: \[ F = \frac{12.04 \, \text{kg m/s}}{0.012 \, \text{s}} \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(\frac{12.04}{0.012}\) - step1: Convert the expressions: \(\frac{\frac{301}{25}}{\frac{3}{250}}\) - step2: Multiply by the reciprocal: \(\frac{301}{25}\times \frac{250}{3}\) - step3: Reduce the numbers: \(301\times \frac{10}{3}\) - step4: Multiply: \(\frac{301\times 10}{3}\) - step5: Multiply: \(\frac{3010}{3}\) The average force exerted by the bat on the ball is: \[ F \approx 1003.33 \, \text{N} \] ### Summary of Results: - **Impulse of the ball:** \( 12.04 \, \text{kg m/s} \) - **Average force exerted by the bat on the ball:** \( 1003.33 \, \text{N} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the impulse of the ball during the collision with the bat, we can use the impulse-momentum theorem, which states that the impulse experienced by an object is equal to the change in momentum of that object. 1. **Calculate the initial momentum:** - Mass \( m = 0.14 \, \text{kg} \) - Initial velocity of the ball \( v_i = 40 \, \text{m/s} \) (toward the batter, considered positive) - Final velocity of the ball \( v_f = -46 \, \text{m/s} \) (after being hit, in the opposite direction) Change in momentum (impulse) \( J = m(v_f - v_i) \) \[ J = 0.14 \, \text{kg} \times (-46 \, \text{m/s} - 40 \, \text{m/s}) = 0.14 \, \text{kg} \times (-86 \, \text{m/s}) = -12.04 \, \text{kg·m/s} \] The impulse of the ball during the collision is approximately **-12.04 kg·m/s**. 2. **Calculate the average force exerted by the bat on the ball:** \[ F = \frac{J}{\Delta t} \] where Δt is the time duration of the collision (0.012 seconds). \[ F = \frac{-12.04 \, \text{kg·m/s}}{0.012 \, \text{s}} \approx -1003.33 \, \text{N} \] The average force exerted by the bat on the ball is approximately **-1003.33 N** (the negative sign indicates the direction opposite to the ball's initial motion).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad