Pregunta
upstudy study bank question image url

55. \( \lim _{x \rightarrow 1^{+}}(\ln x)^{x-1} \)

Ask by Christensen Reyes. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The limit is 1.

Solución

Calculate the limit \( \lim_{x \rightarrow 1^{+}} (\ln(x))^{x-1} \). Evaluate the limit by following steps: - step0: Evaluate using L'Hopital's rule: \(\lim _{x\rightarrow 1^{+}}\left(\left(\ln{\left(x\right)}\right)^{x-1}\right)\) - step1: Transform the expression: \(\lim _{x\rightarrow 1^{+}}\left(e^{\left(x-1\right)\times \ln{\left(\ln{\left(x\right)}\right)}}\right)\) - step2: Transform the expression: \(e^{\lim _{x\rightarrow 1^{+}}\left(\left(x-1\right)\times \ln{\left(\ln{\left(x\right)}\right)}\right)}\) - step3: Use the L'Hopital's rule: \(e^{0}\) - step4: Calculate: \(1\) The limit of \( \lim _{x \rightarrow 1^{+}}(\ln x)^{x-1} \) as \( x \) approaches 1 from the right is 1.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the limit \( \lim _{x \rightarrow 1^{+}}(\ln x)^{x-1} \), we start by examining the behavior of \( \ln x \) as \( x \) approaches \( 1 \) from the right. As \( x \to 1^{+} \), \( \ln x \to \ln 1 = 0 \). Also, \( x - 1 \to 0 \). Therefore, we have a limit of the form \( 0^0 \), which is indeterminate. To resolve this, we can rewrite the expression using the exponential function: \[ (\ln x)^{x-1} = e^{(x-1) \ln(\ln x)} \] Now, we need to analyze the limit of the exponent: \[ \lim_{x \to 1^+} (x-1) \ln(\ln x) \] Next, we substitute \( y = x - 1 \), which means as \( x \to 1^+ \), \( y \to 0^+ \) and \( x = y + 1 \). Now, we rewrite \( \ln x \) in terms of \( y \): \[ \ln x = \ln(y + 1) \] Using the Taylor expansion around \( y = 0 \): \[ \ln(y + 1) \approx y \text{ as } y \to 0 \] Thus: \[ \ln(\ln x) \approx \ln(y) \text{ as } y \to 0 \] Now we have: \[ \lim_{y \to 0^+} y \ln(\ln(y+1)) \approx \lim_{y \to 0^+} y \ln(y) \] The limit \( y \ln(y) \) approaches \( 0 \) as \( y \to 0^{+} \). This is due to the fact that \( \ln(y) \) approaches \( -\infty \) and dominates the term \( y \) as it tends to \( 0 \). Putting it all together, we have: \[ \lim_{x \to 1^+} (x-1) \ln(\ln x) = \lim_{y \to 0^+} y \ln(y) = 0 \] Thus, we can evaluate our original limit: \[ \lim_{x \to 1^{+}} (\ln x)^{x-1} = e^{0} = 1 \] Therefore, the final result is: \[ \boxed{1} \]

preguntas relacionadas

Find \( \lim _{x \rightarrow 0^{+}}\left(e^{-1 / x} \sin (1 / x)-(x+2)^{3}\right) \) (if it exists) and give a careful argument showing that your answer is correct. The notation lim the uniqueness of limits. Prove that limits, if they exist, are indeed unique. That is, the suppose that \( f \) is a real valued function of a real variable, \( a \) is an accumulation point of the domain of \( f \), and \( \ell, m \in \mathbb{R} \). Prove that if \( f(x) \rightarrow \ell \) as \( x \rightarrow a \) and \( f(x) \rightarrow m \) as \( x \rightarrow a \), then \( l=m \). (Explain carefully why it was important that we require \( a \) to be an accumulation point of the domain of \( f \).) Let \( f(x)=\frac{\sin \pi x}{x+1} \) for all \( x \neq-1 \). The following information is known about a function \( g \) defined for all real numbers \( x \neq 1 \) : (i) \( g=\frac{p}{q} \) where \( p(x)=a x^{2}+b x+c \) and \( q(x)=d x+e \) for some constants \( a, b, c, d, e \); (ii) the only \( x \)-intercept of the curve \( y=g(x) \) occurs at the origin; (iii) \( g(x) \geq 0 \) on the interval \( [0,1) \) and is negative elsewhere on its domain; (iv) \( g \) has a vertical asymptote at \( x=1 \); and (v) \( g(1 / 2)=3 \). Either find lim \( g(x) f(x) \) or else show that this limit does not exist. Hints. Write an explicit formula for \( g \) by determining the constants \( a \ldots e \). Use (ii) to find \( c \); use (ii) and (iii) to find \( a \); use (iv) to find a relationship between \( d \) and \( e \); then use (v) to obtain an explicit form for \( g \). Finally look at \( f(x) g(x) \); replace sin \( \pi x \) by sin( \( (x(x-1)+\pi) \) and use the formula for the sine of the sum of two numbers.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad