Pregunta
upstudy study bank question image url

(1) Evaluate the following limits. State the asymptotes, if any: (i) \( \lim _{t \rightarrow 3} \frac{2-t}{-2 t^{2}+7 t-3} \)

Ask by Hampton Vaughn. in Canada
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

As \( t \) approaches 3, the limit of \( \frac{2 - t}{-2t^2 + 7t - 3} \) does not exist because it approaches \( +\infty \) from the right and \( -\infty \) from the left. The function has vertical asymptotes at \( t = \frac{1}{2} \) and \( t = 3 \), and a horizontal asymptote at \( y = 0 \).

Solución

To evaluate the limit and identify the asymptotes for the function: \[ \lim_{t \to 3} \frac{2 - t}{-2t^2 + 7t - 3} \] ### Step 1: Simplify the Expression First, factor the denominator: \[ -2t^2 + 7t - 3 = - (2t^2 - 7t + 3) \] Factor the quadratic \(2t^2 - 7t + 3\): \[ 2t^2 - 7t + 3 = (2t - 1)(t - 3) \] So, the original expression becomes: \[ \frac{2 - t}{-2t^2 + 7t - 3} = \frac{-(t - 2)}{- (2t - 1)(t - 3)} = \frac{t - 2}{(2t - 1)(t - 3)} \] ### Step 2: Evaluate the Limit As \(t\) approaches 3: - **Numerator:** \(t - 2 \to 3 - 2 = 1\) - **Denominator:** \((2t - 1)(t - 3) \to (6 - 1)(0) = 5 \times 0 = 0\) Since the denominator approaches 0 and the numerator approaches 1, the behavior of the limit depends on the direction from which \(t\) approaches 3. - **From the Right (\(t \to 3^+\)):** - \(t - 3 \) is positive. - The denominator approaches \(0^+\), making the entire fraction tend to \(+\infty\). - **From the Left (\(t \to 3^-\)):** - \(t - 3 \) is negative. - The denominator approaches \(0^-\), making the entire fraction tend to \(-\infty\). Since the left-hand limit and right-hand limit are not equal (they approach \(+\infty\) and \(-\infty\) respectively), the overall limit **does not exist**. ### Step 3: Identify Asymptotes 1. **Vertical Asymptotes:** - Occur where the denominator is zero and the numerator is not zero. - From the factored form, \( (2t - 1)(t - 3) = 0 \): - \(2t - 1 = 0 \Rightarrow t = \frac{1}{2}\) - \(t - 3 = 0 \Rightarrow t = 3\) - **Vertical Asymptotes at:** \( t = \frac{1}{2} \) and \( t = 3 \) 2. **Horizontal Asymptote:** - Compare the degrees of the numerator and the denominator. - The numerator is degree 1, and the denominator is degree 2. - As \( t \to \pm\infty \), the function approaches \(0\). - **Horizontal Asymptote at:** \( y = 0 \) ### Summary - **Limit Evaluation:** \[ \lim_{t \to 3} \frac{2 - t}{-2t^2 + 7t - 3} \text{ does not exist because it approaches } +\infty \text{ from the right and } -\infty \text{ from the left.} \] - **Asymptotes:** - **Vertical Asymptotes:** \( t = \frac{1}{2} \) and \( t = 3 \) - **Horizontal Asymptote:** \( y = 0 \) **Final Answer:** (i) As \( t \) approaches 3, (2 – t)/(–2t² + 7t – 3) grows without bound: the limit is +∞ from above and –∞ from below. The graph has vertical asymptotes at \( t = \tfrac{1}{2} \) and \( t = 3 \), and a horizontal asymptote at \( y = 0 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To evaluate the limit \( \lim _{t \rightarrow 3} \frac{2-t}{-2 t^{2}+7 t-3} \), we start by substituting \( t = 3 \): The numerator becomes \( 2 - 3 = -1 \). The denominator becomes \( -2(3^2) + 7(3) - 3 = -2(9) + 21 - 3 = -18 + 21 - 3 = 0 \). Since the limit is of the form \( \frac{-1}{0} \), which indicates a vertical asymptote. To investigate the behavior as \( t \) approaches 3, we’ll check the sign of the denominator: - For \( t < 3 \), say \( t = 2.9 \): \( -2(2.9^2) + 7(2.9) - 3 < 0 \) - For \( t > 3 \), say \( t = 3.1 \): \( -2(3.1^2) + 7(3.1) - 3 > 0 \) Thus, the limit approaches \( -\infty \) as \( t \to 3^- \) and \( +\infty \) as \( t \to 3^+ \). This gives us a vertical asymptote at \( t = 3 \). So, the limit is \( \lim _{t \rightarrow 3} \frac{2-t}{-2 t^{2}+7 t-3} = -\infty \) from the left and \( +\infty \) from the right, with a vertical asymptote at \( t = 3 \).

preguntas relacionadas

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad