Pregunta
upstudy study bank question image url

The derivative of the function \( f \) is defined by \( f^{\prime}(x)=x^{2}+4 \cos (2 x+2) \) for \( -2
Ask by Lewis Hardy. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find where the function \( f \) is increasing, solve \( x^{2} + 4 \cos(2x + 2) > 0 \) in the interval \( -2 < x < 4 \). Use a calculator to find the roots of \( x^{2} + 4 \cos(2x + 2) = 0 \) and test intervals between the roots to determine where the derivative is positive.

Solución

Simplify the expression by following steps: - step0: Solution: \(x^{2}+4\cos\left(2x+2\right)\) It seems that I cannot directly solve the equation numerically at this moment. However, I can guide you through the process of finding the roots using numerical methods or a graphing calculator. ### Step 6: Numerical Method You can use a numerical method such as the Newton-Raphson method or a graphing calculator to find the roots of the equation \( x^{2} + 4 \cos(2x + 2) = 0 \) in the interval \( -2 < x < 4 \). ### Step 7: Analyze the intervals 1. **Check endpoints**: Evaluate \( f^{\prime}(-2) \) and \( f^{\prime}(4) \) to see if they are positive or negative. 2. **Test intervals**: Choose test points in the intervals determined by the roots found in the previous step to see if \( f^{\prime}(x) \) is positive or negative. ### Step 8: Conclusion - If \( f^{\prime}(x) > 0 \) in an interval, then \( f \) is increasing in that interval. - If \( f^{\prime}(x) < 0 \), then \( f \) is decreasing. ### Example of Testing Intervals 1. If you find roots at \( x = a \) and \( x = b \), test points in the intervals \( (-2, a) \), \( (a, b) \), and \( (b, 4) \). 2. For each test point, substitute into \( f^{\prime}(x) \) to determine the sign. ### Final Step Once you have the roots and the signs of \( f^{\prime}(x) \) in each interval, you can conclude where \( f \) is increasing. If you have access to a graphing calculator or software, you can plot \( f^{\prime}(x) \) to visually identify the intervals where it is positive. Would you like me to assist you with any specific calculations or further steps?

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine where the function \( f \) is increasing, we need to find the intervals where its derivative \( f^{\prime}(x) = x^{2} + 4 \cos(2x + 2) \) is greater than zero. 1. First, we analyze the behavior of the derivative. The term \( x^{2} \) is always non-negative and increases as \( x \) increases. The cosine term oscillates between -1 and 1, which means \( 4 \cos(2x + 2) \) oscillates between -4 and 4. Thus, the minimum value of the derivative occurs when \( \cos(2x + 2) = -1 \), giving us \( f^{\prime}(x) = x^{2} - 4 \). 2. To find where \( f^{\prime}(x) > 0 \): \[ x^{2} - 4 > 0 \implies x^{2} > 4 \implies x < -2 \text{ or } x > 2 \] However, we are limited to the domain \( -2 < x < 4 \), so only \( x > 2 \) is relevant here. 3. Now, we need to further analyze the derivative in the interval \( -2 < x < 4 \), particularly near 2: - For \( -2 < x < 2 \): Check values (let's test \( x = 0 \)): \[ f^{\prime}(0) = 0^{2} + 4 \cos(2 \cdot 0 + 2) = 4 \cos(2) \approx 4 \cdot (-0.416) \approx -1.664 \quad (\text{negative}) \] - For \( 2 < x < 4 \): Check values (let's test \( x = 3 \)): \[ f^{\prime}(3) = 3^{2} + 4 \cos(2 \cdot 3 + 2) = 9 + 4 \cos(8) \approx 9 + 4 \cdot 0.990 \approx 9 + 3.960 = 12.960 \quad (\text{positive}) \] Thus, the function \( f \) is increasing on the interval \( (2, 4) \). In summary, the function \( f \) is increasing where \( f^{\prime}(x) > 0 \), specifically in the interval: **Answer: \( (2, 4) \)**

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad