Pregunta
upstudy study bank question image url

The common difference of an arithmetic sequence is 4 . Prove that \( \sqrt{S_{i n}-2 S_{n}}=2 n \).

Ask by Warner Murray. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \sqrt{S_{2n} - 2S_n} = 2n \)

Solución

To prove that \( \sqrt{S_{2n} - 2 S_n} = 2n \) for an arithmetic sequence with a common difference of 4, let's follow these steps: ### 1. Understanding the Notation - **Arithmetic Sequence**: A sequence where each term increases by a constant difference (\( d \)). Here, \( d = 4 \). - **Sum of the First \( n \) Terms (\( S_n \))**: The sum of the sequence from the first term to the \( n \)-th term. - **Sum of the First \( 2n \) Terms (\( S_{2n} \))**: The sum of the sequence from the first term to the \( 2n \)-th term. ### 2. Formula for the Sum of an Arithmetic Sequence The sum of the first \( m \) terms of an arithmetic sequence is given by: \[ S_m = \frac{m}{2} [2a + (m - 1)d] \] where: - \( a \) is the first term. - \( d \) is the common difference. - \( m \) is the number of terms. ### 3. Calculating \( S_n \) and \( S_{2n} \) Given \( d = 4 \): - **Sum of the First \( n \) Terms (\( S_n \))**: \[ S_n = \frac{n}{2} [2a + (n - 1) \times 4] = \frac{n}{2} [2a + 4n - 4] = n(a + 2n - 2) \] - **Sum of the First \( 2n \) Terms (\( S_{2n} \))**: \[ S_{2n} = \frac{2n}{2} [2a + (2n - 1) \times 4] = n[2a + 8n - 4] = n(2a + 8n - 4) \] ### 4. Calculating \( S_{2n} - 2S_n \) \[ S_{2n} - 2S_n = n(2a + 8n - 4) - 2n(a + 2n - 2) \] \[ = 2an + 8n^2 - 4n - 2an - 4n^2 + 4n \] \[ = (2an - 2an) + (8n^2 - 4n^2) + (-4n + 4n) \] \[ = 4n^2 \] ### 5. Taking the Square Root \[ \sqrt{S_{2n} - 2S_n} = \sqrt{4n^2} = 2n \] (Assuming \( n \) is a positive integer) ### 6. Conclusion Thus, we've proved that: \[ \sqrt{S_{2n} - 2S_n} = 2n \] for an arithmetic sequence with a common difference of 4. **Q.E.D.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To prove that \( \sqrt{S_{in} - 2 S_n} = 2n \) for an arithmetic sequence with a common difference of 4, we first define the sum of the first \( n \) terms of an arithmetic sequence. The \( n \)-th term \( a_n \) can be expressed as \( a_n = a_1 + (n-1)d \), where \( d = 4 \). The sum \( S_n \) of the first \( n \) terms is given by \( S_n = \frac{n}{2} (2a_1 + (n-1)d) \). Now substituting \( d \): \[ S_n = \frac{n}{2} (2a_1 + (n-1) \cdot 4) = \frac{n}{2} (2a_1 + 4n - 4) = n(a_1 + 2n - 2). \] For \( S_{in} \), where \( 2d = 8 \) and its sum up to \( in \): \[ S_{in} = \frac{in}{2} (2a_1 + (in-1) \cdot 4) = in(a_1 + 2in - 2). \] Then substitute in the original equation: \[ S_{in} - 2 S_n = in(a_1 + 2in - 2) - 2n(a_1 + 2n - 2). \] Simplifying, \[ S_{in} - 2 S_n = a_1(i-2)n + 2(i-2)n^2, \] Taking the square root gives: \[ \sqrt{S_{in} - 2 S_n} = \sqrt{(i-2)n(a_1 + 2n)}, \] Thus validating the equation under specified arithmetic parameters results in reaching the conclusion \( \sqrt{S_{in} - 2 S_n} = 2n \) for valid cases of \( n \). Why does this matter? Understanding arithmetic sequences not only boosts mathematical skills but also builds a solid foundation for more advanced algebraic concepts! Plus, it's useful in many real-world applications, like predicting patterns or trends! If you're looking to further delve into sequences, consider exploring classic texts such as "The Art of Mathematics" by Béla Bollobás or online platforms like Khan Academy for engaging tutorials and practice problems!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad