Pregunta

(2) \( 3 \cdot 3^{x} \) \( 3^{x}+3^{x-1} \)

Ask by Hill Chambers. in South Africa
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( 3 \cdot 3^{x} = 3^{x + 1} \) \( 3^{x} + 3^{x-1} = 4 \cdot 3^{x-1} \)

Solución

Certainly! Let's simplify each of the given expressions step by step. --- ### 1. Simplifying \( 3 \cdot 3^{x} \) **Given Expression:** \[ 3 \cdot 3^{x} \] **Simplification Using Exponent Rules:** Recall that when you multiply two powers with the same base, you add their exponents: \[ a^m \cdot a^n = a^{m+n} \] Applying this rule: \[ 3 \cdot 3^{x} = 3^{1} \cdot 3^{x} = 3^{x + 1} \] **Simplified Form:** \[ 3^{x + 1} \] --- ### 2. Simplifying \( 3^{x} + 3^{x-1} \) **Given Expression:** \[ 3^{x} + 3^{x-1} \] **Method 1: Factoring Out the Common Term** 1. **Identify the Common Factor:** Both terms contain \( 3^{x-1} \). Notice that: \[ 3^{x} = 3^{x-1} \cdot 3^{1} = 3^{x-1} \cdot 3 \] 2. **Factor Out \( 3^{x-1} \):** \[ 3^{x} + 3^{x-1} = 3^{x-1} \cdot 3 + 3^{x-1} = 3^{x-1} (3 + 1) \] 3. **Simplify Inside the Parentheses:** \[ 3^{x-1} (3 + 1) = 3^{x-1} \cdot 4 \] **Simplified Form:** \[ 4 \cdot 3^{x-1} \] --- **Alternative Method: Expressing in Terms of \( 3^{x} \)** 1. **Express \( 3^{x-1} \) as \( \frac{3^{x}}{3} \):** \[ 3^{x-1} = \frac{3^{x}}{3} \] 2. **Rewrite the Original Expression:** \[ 3^{x} + 3^{x-1} = 3^{x} + \frac{3^{x}}{3} \] 3. **Factor Out \( 3^{x} \):** \[ 3^{x} \left(1 + \frac{1}{3}\right) = 3^{x} \cdot \frac{4}{3} \] **Simplified Form:** \[ \frac{4}{3} \cdot 3^{x} \] --- **Summary of Simplifications:** 1. \( 3 \cdot 3^{x} = 3^{x + 1} \) 2. \( 3^{x} + 3^{x-1} = 4 \cdot 3^{x-1} \) **or** \( \frac{4}{3} \cdot 3^{x} \) Both forms for the second expression are correct. You can choose the one that best fits the context of your problem or your preference. --- If you have any further questions or need additional clarification, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the expression \( 3 \cdot 3^{x} \) can be simplified to \( 3^{x+1} \)? This is because multiplying two exponents with the same base involves adding their powers! So, in this case, you combine 3's exponents in a fun little dance, making it a nice sleek expression that you can use to solve equations more easily. Now, let’s take a look at \( 3^{x}+3^{x-1} \). You can factor out the common term \( 3^{x-1} \), leading to \( 3^{x-1}(3 + 1) \) or simply \( 4 \cdot 3^{x-1} \). This not only simplifies your expression but also visually showcases how factoring can make complex expressions more digestible, kind of like peeling the layers off an onion to reveal the tasty core inside!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad