Responder
\( 3 \cdot 3^{x} = 3^{x + 1} \)
\( 3^{x} + 3^{x-1} = 4 \cdot 3^{x-1} \)
Solución
Certainly! Let's simplify each of the given expressions step by step.
---
### 1. Simplifying \( 3 \cdot 3^{x} \)
**Given Expression:**
\[ 3 \cdot 3^{x} \]
**Simplification Using Exponent Rules:**
Recall that when you multiply two powers with the same base, you add their exponents:
\[ a^m \cdot a^n = a^{m+n} \]
Applying this rule:
\[ 3 \cdot 3^{x} = 3^{1} \cdot 3^{x} = 3^{x + 1} \]
**Simplified Form:**
\[ 3^{x + 1} \]
---
### 2. Simplifying \( 3^{x} + 3^{x-1} \)
**Given Expression:**
\[ 3^{x} + 3^{x-1} \]
**Method 1: Factoring Out the Common Term**
1. **Identify the Common Factor:**
Both terms contain \( 3^{x-1} \). Notice that:
\[ 3^{x} = 3^{x-1} \cdot 3^{1} = 3^{x-1} \cdot 3 \]
2. **Factor Out \( 3^{x-1} \):**
\[ 3^{x} + 3^{x-1} = 3^{x-1} \cdot 3 + 3^{x-1} = 3^{x-1} (3 + 1) \]
3. **Simplify Inside the Parentheses:**
\[ 3^{x-1} (3 + 1) = 3^{x-1} \cdot 4 \]
**Simplified Form:**
\[ 4 \cdot 3^{x-1} \]
---
**Alternative Method: Expressing in Terms of \( 3^{x} \)**
1. **Express \( 3^{x-1} \) as \( \frac{3^{x}}{3} \):**
\[ 3^{x-1} = \frac{3^{x}}{3} \]
2. **Rewrite the Original Expression:**
\[ 3^{x} + 3^{x-1} = 3^{x} + \frac{3^{x}}{3} \]
3. **Factor Out \( 3^{x} \):**
\[ 3^{x} \left(1 + \frac{1}{3}\right) = 3^{x} \cdot \frac{4}{3} \]
**Simplified Form:**
\[ \frac{4}{3} \cdot 3^{x} \]
---
**Summary of Simplifications:**
1. \( 3 \cdot 3^{x} = 3^{x + 1} \)
2. \( 3^{x} + 3^{x-1} = 4 \cdot 3^{x-1} \) **or** \( \frac{4}{3} \cdot 3^{x} \)
Both forms for the second expression are correct. You can choose the one that best fits the context of your problem or your preference.
---
If you have any further questions or need additional clarification, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución