Pregunta
upstudy study bank question image url

Question Find the domain of \( \mathrm{f}(\mathrm{x}) \). \[ f(x)=\sqrt{-x^{2}+5 x-4} \] Answer Attempt 1 out of 2 Answer Type: Interval watch Vic

Ask by Bowman Pena. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The domain of \( f(x) = \sqrt{ -x^2 + 5x - 4 } \) is all real numbers \( x \) such that \( 1 \leq x \leq 4 \). \[ \boxed{[1, 4]} \]

Solución

To find the **domain** of the function \( f(x) = \sqrt{ -x^2 + 5x - 4 } \), we need to determine all real numbers \( x \) for which the expression inside the square root is **non-negative** (since the square root of a negative number is not a real number). ### Step 1: Set the Inside of the Square Root to be Non-Negative \[ -x^2 + 5x - 4 \geq 0 \] ### Step 2: Rearrange the Inequality It's often easier to work with positive leading coefficients. Multiply both sides of the inequality by -1, remembering to **reverse the inequality sign** when multiplying or dividing by a negative number: \[ x^2 - 5x + 4 \leq 0 \] ### Step 3: Factor the Quadratic Expression \[ x^2 - 5x + 4 = (x - 1)(x - 4) \] So the inequality becomes: \[ (x - 1)(x - 4) \leq 0 \] ### Step 4: Find the Critical Points The critical points are the values of \( x \) that make each factor zero: \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] \[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \] These points divide the real number line into three intervals: 1. \( x < 1 \) 2. \( 1 \leq x \leq 4 \) 3. \( x > 4 \) ### Step 5: Test Each Interval Choose a test point in each interval to determine where the inequality holds. 1. **Interval \( x < 1 \)**: - **Test Point**: \( x = 0 \) - \((0 - 1)(0 - 4) = (-1)(-4) = 4 > 0\) → Doesn't satisfy \( \leq 0 \) 2. **Interval \( 1 \leq x \leq 4 \)**: - **Test Point**: \( x = 2 \) - \((2 - 1)(2 - 4) = (1)(-2) = -2 < 0\) → Satisfies \( \leq 0 \) 3. **Interval \( x > 4 \)**: - **Test Point**: \( x = 5 \) - \((5 - 1)(5 - 4) = (4)(1) = 4 > 0\) → Doesn't satisfy \( \leq 0 \) ### Step 6: Include the Endpoints Check the critical points \( x = 1 \) and \( x = 4 \): - At \( x = 1 \): \[ f(1) = \sqrt{ -1^2 + 5(1) - 4 } = \sqrt{ -1 + 5 - 4 } = \sqrt{0} = 0 \quad \text{(Defined)} \] - At \( x = 4 \): \[ f(4) = \sqrt{ -4^2 + 5(4) - 4 } = \sqrt{ -16 + 20 - 4 } = \sqrt{0} = 0 \quad \text{(Defined)} \] ### Final Answer The function \( f(x) = \sqrt{ -x^2 + 5x - 4 } \) is defined for all real numbers \( x \) in the interval **[1, 4]**. \[ \boxed{\, [\,1,\ 4\,] \,} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the domain of \( f(x) = \sqrt{-x^2 + 5x - 4} \), we need to ensure that the expression under the square root is non-negative. This translates to solving the inequality: \[ -x^2 + 5x - 4 \geq 0 \] This can be rearranged to: \[ x^2 - 5x + 4 \leq 0 \] Factoring gives: \[ (x - 1)(x - 4) \leq 0 \] Now, we find the critical points by setting the left-hand side to zero: \( x = 1 \) and \( x = 4 \). Testing intervals, we find that the solution is \( 1 \leq x \leq 4 \). Thus, the domain of \( f(x) \) is: \[ [1, 4] \] The square root function is always looking for non-negative values. So, the expression inside has to dance between being greater than or equal to zero to keep the party going! Think of it as only inviting certain numbers that bring positive vibes to your calculation party. And voilà, only numbers from 1 to 4 made the guest list! Want to delve deeper into the methods of inequalities? There’s a treasure trove of resources, including math forums, educational websites like Khan Academy or Coursera, and calculus textbooks that can dive into the beautiful world of real analysis. Exploring these can give you a richer understanding of functions and their domains, along with equations that might pop up during your mathematical journey!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad