Pregunta
upstudy study bank question image url

Janelys is going to invest in an account paying an interest rate of \( 5.9 \% \) compounded daily. How much would Janelys need to invest, to the nearest ten dollars, for the value of the account to reach \( \$ 1,890 \) in 12 years?

Ask by Reyes Powers. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Janelys needs to invest approximately \$930 to reach \$1,890 in 12 years with a 5.9% daily compounded interest rate.

Solución

To find out how much Janelys needs to invest today (the present value \( P \)) to reach a future value \( A \) of \$1,890 in 12 years with an interest rate of \( 5.9\% \) compounded daily, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the future value of the investment/loan, including interest. - \( P \) is the principal investment amount (the initial deposit or loan amount). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. Given: - \( A = 1890 \) - \( r = 5.9\% = 0.059 \) - \( n = 365 \) (since the interest is compounded daily) - \( t = 12 \) We need to rearrange the formula to solve for \( P \): \[ P = \frac{A}{\left(1 + \frac{r}{n}\right)^{nt}} \] Now, let's calculate \( P \) step by step. 1. Calculate \( \frac{r}{n} \). 2. Calculate \( nt \). 3. Calculate \( \left(1 + \frac{r}{n}\right)^{nt} \). 4. Finally, calculate \( P \). Let's perform these calculations. ### Step 1: Calculate \( \frac{r}{n} \) \[ \frac{r}{n} = \frac{0.059}{365} \] ### Step 2: Calculate \( nt \) \[ nt = 365 \times 12 \] ### Step 3: Calculate \( \left(1 + \frac{r}{n}\right)^{nt} \) Now we can calculate \( P \) using the values from the previous steps. Let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(365\times 12\) - step1: Multiply the numbers: \(4380\) Calculate or simplify the expression \( 0.059/365 \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.059}{365}\) - step1: Convert the expressions: \(\frac{\frac{59}{1000}}{365}\) - step2: Multiply by the reciprocal: \(\frac{59}{1000}\times \frac{1}{365}\) - step3: Multiply the fractions: \(\frac{59}{1000\times 365}\) - step4: Multiply: \(\frac{59}{365000}\) Calculate or simplify the expression \( (1 + 0.000162)^(4380) \). Calculate the value by following steps: - step0: Calculate: \(\left(1+0.000162\right)^{4380}\) - step1: Add the numbers: \(1.000162^{4380}\) - step2: Convert the expressions: \(\left(\frac{500081}{500000}\right)^{4380}\) - step3: Use the properties of exponents: \(\frac{500081^{4380}}{500000^{4380}}\) Calculate or simplify the expression \( 1890/(2.03298) \). Calculate the value by following steps: - step0: Calculate: \(\frac{1890}{2.03298}\) - step1: Convert the expressions: \(\frac{1890}{\frac{101649}{50000}}\) - step2: Multiply by the reciprocal: \(1890\times \frac{50000}{101649}\) - step3: Reduce the numbers: \(630\times \frac{50000}{33883}\) - step4: Multiply: \(\frac{630\times 50000}{33883}\) - step5: Multiply: \(\frac{31500000}{33883}\) Now that we have completed the calculations, let's summarize the steps and results: 1. **Calculate \( \frac{r}{n} \)**: \[ \frac{r}{n} = \frac{0.059}{365} \approx 0.000162 \] 2. **Calculate \( nt \)**: \[ nt = 365 \times 12 = 4380 \] 3. **Calculate \( \left(1 + \frac{r}{n}\right)^{nt} \)**: \[ \left(1 + 0.000162\right)^{4380} \approx 2.03298 \] 4. **Calculate \( P \)**: \[ P = \frac{1890}{2.03298} \approx 929.67 \] To find the amount Janelys needs to invest, we round \( 929.67 \) to the nearest ten dollars: \[ P \approx 930 \] Thus, Janelys would need to invest approximately **\$930** to reach a value of \$1,890 in 12 years at an interest rate of \( 5.9\% \) compounded daily.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how much Janelys needs to invest today (the present value), we can use the formula for compound interest: \[ PV = \frac{FV}{(1 + r/n)^{nt}} \] Where: - \( PV \) = Present Value - \( FV \) = Future Value ($1,890) - \( r \) = annual interest rate (5.9% or 0.059) - \( n \) = number of times interest is compounded per year (daily, so 365) - \( t \) = number of years (12) Plugging the values into the formula gives: \[ PV = \frac{1890}{(1 + 0.059/365)^{365 \times 12}} \] First, calculate the interest rate per period and the total number of compounding periods: 1. \( r/n = 0.059/365 \approx 0.0001616 \) 2. \( nt = 365 \times 12 = 4380 \) Now, calculate the compound factor: \[ PV = \frac{1890}{(1 + 0.0001616)^{4380}} \] Calculating that exponent term: \[ (1 + 0.0001616)^{4380} \approx 1.8481 \] Now compute the present value: \[ PV \approx \frac{1890}{1.8481} \approx 1022.73 \] Rounding to the nearest ten dollars, Janelys would need to invest approximately **$1,020** today to reach her goal of $1,890 in 12 years.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad