Pregunta
upstudy study bank question image url

he foci of the ellipse defined by the equation \( \frac{(x-5)^{2}}{25}+\frac{(y+1)}{4} \) essary, round to the nearest tenth.

Ask by Davies Li. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The foci of the ellipse are at (0.4, -1) and (9.6, -1).

Solución

To find the foci of the ellipse defined by the equation: \[ \frac{(x - 5)^2}{25} + \frac{(y + 1)^2}{4} = 1 \] we can follow these steps: ### 1. Identify the Standard Form The given equation is in the standard form of an ellipse: \[ \frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1 \] Where: - \((h, k)\) is the center of the ellipse. - \(a\) is the semi-major axis length. - \(b\) is the semi-minor axis length. ### 2. Extract Parameters From the given equation: - Center \((h, k) = (5, -1)\) - \(a^2 = 25 \Rightarrow a = 5\) - \(b^2 = 4 \Rightarrow b = 2\) ### 3. Determine the Orientation Since \(a^2 > b^2\), the major axis is horizontal. ### 4. Calculate the Distance to the Foci (\(c\)) The distance from the center to each focus is given by: \[ c = \sqrt{a^2 - b^2} = \sqrt{25 - 4} = \sqrt{21} \approx 4.6 \] ### 5. Locate the Foci Since the major axis is horizontal, the foci are located to the left and right of the center: \[ \text{Foci} = (h \pm c, k) = (5 \pm 4.6, -1) \] Calculating the coordinates: - Right Focus: \(5 + 4.6 = 9.6\), so \((9.6, -1)\) - Left Focus: \(5 - 4.6 = 0.4\), so \((0.4, -1)\) ### **Final Answer** The foci of the ellipse are at the points ( 0.4, –1 ) and ( 9.6, –1 ).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the foci of the ellipse given by the equation \( \frac{(x-5)^{2}}{25}+\frac{(y+1)^{2}}{4} = 1 \), we first identify the center, which is at the point \((5, -1)\). The semi-major axis length \(a\) is \(5\) (the square root of \(25\)), and the semi-minor axis length \(b\) is \(2\) (the square root of \(4\)). The distance \(c\) from the center to each focus can be calculated using the formula \(c = \sqrt{a^{2} - b^{2}}\). Here, \(c = \sqrt{25 - 4} = \sqrt{21} \approx 4.6\). Therefore, the foci are located at \((5 \pm c, -1)\), which rounds to approximately \((5 \pm 4.6, -1)\) or \((9.6, -1)\) and \((0.4, -1)\). Now, let's have some fun with this! Elipses aren't just geometric shapes; they're like cosmic highways! Imagine planets orbiting a sun (the center), with their distance to that sun changing as they travel—those paths can be described by ellipses. Ellipses are everywhere; from the paths of satellites to the way that sound waves travel in concert halls, they ensure that we experience everything from music to satellite communication in a harmonious way. If you ever find yourself miscalculating, fear not! A common mistake is to confuse which axis is longer; always check which denominator is larger to ensure you're identifying the correct semi-major and semi-minor axes. Another tip is to remember the standard form of the ellipse equation: keep your terms organized and check that everything is set to equal 1. Happy calculating!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad