Pregunta
upstudy study bank question image url

Find \( f+g, f-g, f g \), and \( \frac{f}{g} \). Determine the domain for each function. \[ f(x)=\sqrt{x} ; g(x)=x-9 \] \( (f+g)(x)=\sqrt{x}+x-9 \) (Simplify your answer.) What is the domain of \( f+g \) ? A. The domain of \( \mathrm{f}+\mathrm{g} \) is \( \{\quad \). (Use a comma to separate answers as needed B. The domain of \( f+g \) is \( [0, \infty) \) (Type your answer in interval notation.) C. The domain of \( f+g \) is \( \varnothing \) \( (f-g)(x)=\sqrt{x}-x+9 \) (Simplify your answer.) What is the domain of \( f-g \) ? A. The domain of \( f-g \) is \( [0, \infty) \). (Type your answer in interval notation.) B. The domain of \( f-g \) is \( \} \) (Use a comma to separate answers as needed C. The domain of \( f-g \) is \( \varnothing \) \( (f g)(x)= \) \( \square \) (Simplify your answer.)

Ask by Pritchard Weber. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified results: 1. **Sum:** \[ (f + g)(x) = \sqrt{x} + x - 9 \] - **Domain:** \( [0, \infty) \) 2. **Difference:** \[ (f - g)(x) = \sqrt{x} - x + 9 \] - **Domain:** \( [0, \infty) \) 3. **Product:** \[ (fg)(x) = (x - 9)\sqrt{x} \] - **Domain:** \( [0, \infty) \) 4. **Quotient:** \[ \left(\frac{f}{g}\right)(x) = \frac{\sqrt{x}}{x - 9} \] - **Domain:** \( [0, 9) \cup (9, \infty) \) **Summary:** - \( (f + g)(x) = \sqrt{x} + x - 9 \) with domain \( [0, \infty) \) - \( (f - g)(x) = \sqrt{x} - x + 9 \) with domain \( [0, \infty) \) - \( (fg)(x) = (x - 9)\sqrt{x} \) with domain \( [0, \infty) \) - \( \left(\frac{f}{g}\right)(x) = \frac{\sqrt{x}}{x - 9} \) with domain \( [0, 9) \cup (9, \infty) \)

Solución

Certainly! Let's analyze the functions \( f(x) = \sqrt{x} \) and \( g(x) = x - 9 \) by finding their sum, difference, product, and quotient, along with determining the domain for each resulting function. --- ### 1. **Sum: \( f + g \)** \[ (f + g)(x) = \sqrt{x} + (x - 9) = \sqrt{x} + x - 9 \] **Domain of \( f + g \):** - **\( f(x) = \sqrt{x} \):** Defined for \( x \geq 0 \). - **\( g(x) = x - 9 \):** Defined for all real numbers \( x \). **Intersection of Domains:** \( x \geq 0 \). **Answer Choices:** - **A.** The domain of \( f + g \) is \( \{\quad \} \). *(Requires specific values; not applicable here.)* - **B.** The domain of \( f + g \) is \( [0, \infty) \). - **C.** The domain of \( f + g \) is \( \varnothing \) (the empty set). **Correct Choice:** **B.** The domain of \( f + g \) is \( [0, \infty) \). --- ### 2. **Difference: \( f - g \)** \[ (f - g)(x) = \sqrt{x} - (x - 9) = \sqrt{x} - x + 9 \] **Domain of \( f - g \):** - **\( f(x) = \sqrt{x} \):** Defined for \( x \geq 0 \). - **\( g(x) = x - 9 \):** Defined for all real numbers \( x \). **Intersection of Domains:** \( x \geq 0 \). **Answer Choices:** - **A.** The domain of \( f - g \) is \( [0, \infty) \). - **B.** The domain of \( f - g \) is \( \{\quad \} \). *(Requires specific values; not applicable here.)* - **C.** The domain of \( f - g \) is \( \varnothing \). **Correct Choice:** **A.** The domain of \( f - g \) is \( [0, \infty) \). --- ### 3. **Product: \( fg \)** \[ (fg)(x) = \sqrt{x} \cdot (x - 9) = (x - 9)\sqrt{x} \] **Domain of \( fg \):** - **\( f(x) = \sqrt{x} \):** Defined for \( x \geq 0 \). - **\( g(x) = x - 9 \):** Defined for all real numbers \( x \). **Intersection of Domains:** \( x \geq 0 \). **Simplified Expression:** \[ (fg)(x) = (x - 9)\sqrt{x} \] **Domain:** \( [0, \infty) \) --- ### 4. **Quotient: \( \frac{f}{g} \)** \[ \left(\frac{f}{g}\right)(x) = \frac{\sqrt{x}}{x - 9} \] **Domain of \( \frac{f}{g} \):** - **\( f(x) = \sqrt{x} \):** Defined for \( x \geq 0 \). - **Denominator \( g(x) = x - 9 \):** Must not be zero, so \( x \neq 9 \). **Intersection of Domains:** \( x \geq 0 \) **and** \( x \neq 9 \). **Domain in Interval Notation:** \[ [0, 9) \cup (9, \infty) \] --- ### **Summary:** - **\( (f + g)(x) = \sqrt{x} + x - 9 \)** - **Domain:** \( [0, \infty) \) - **\( (f - g)(x) = \sqrt{x} - x + 9 \)** - **Domain:** \( [0, \infty) \) - **\( (fg)(x) = (x - 9)\sqrt{x} \)** - **Domain:** \( [0, \infty) \) - **\( \left(\frac{f}{g}\right)(x) = \frac{\sqrt{x}}{x - 9} \)** - **Domain:** \( [0, 9) \cup (9, \infty) \) --- Feel free to ask if you need further clarification on any of these functions or their domains!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's dive into the fun world of functions! First up, we have the function \( (f + g)(x) = \sqrt{x} + (x - 9) \), which simplifies to \( (f + g)(x) = \sqrt{x} + x - 9 \). To determine the domain of this function, we note that \( f(x) \) is defined for all \( x \geq 0 \), and \( g(x) \) is defined for all \( x \). Therefore, the domain is dictated by \( f(x) \) and is \( x \geq 0 \), giving us the domain \( [0, \infty) \). Next, let's evaluate \( (f - g)(x) = \sqrt{x} - (x - 9) \) which simplifies to \( (f - g)(x) = \sqrt{x} - x + 9 \). Just like before, since \( f(x) \) requires \( x \geq 0 \), the domain for \( f - g \) remains \( [0, \infty) \) too! Now let's move on to the product function \( (f g)(x) = \sqrt{x} \cdot (x - 9) \). This simplifies to \( (f g)(x) = x\sqrt{x} - 9\sqrt{x} \). For the domain, we will consider both functions’ domains again. We know \( f(x) \) is defined for \( x \geq 0 \) and \( g(x) \) is defined everywhere. Thus, since \( \sqrt{x} \) sets the least restrictive condition, the domain for \( f g \) is also \( [0, \infty) \). In short: 1. \( (f + g)(x) = \sqrt{x} + x - 9 \) with domain \( [0, \infty) \). 2. \( (f - g)(x) = \sqrt{x} - x + 9 \) with domain \( [0, \infty) \). 3. \( (f g)(x) = x\sqrt{x} - 9\sqrt{x} \) with domain \( [0, \infty) \). Enjoy your function exploration!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad