Prove that:- \( \left[\frac{-1}{2}\right]+\frac{1}{3}=\frac{1}{3}+\left[\frac{-1}{2}\right] \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To prove the equality \( \left[\frac{-1}{2}\right]+\frac{1}{3}=\frac{1}{3}+\left[\frac{-1}{2}\right] \), we start by calculating the left-hand side and the right-hand side separately. First, we evaluate \( \left[\frac{-1}{2}\right] \). The floor function \( \left[x\right] \) returns the greatest integer less than or equal to \( x \). Therefore, \( \left[\frac{-1}{2}\right] = -1 \) since -1 is the largest integer that is not greater than -0.5. Now, we substitute into the equation: Left-hand side: \[ \left[\frac{-1}{2}\right] + \frac{1}{3} = -1 + \frac{1}{3} = -\frac{3}{3} + \frac{1}{3} = -\frac{2}{3} \] Right-hand side: \[ \frac{1}{3} + \left[\frac{-1}{2}\right] = \frac{1}{3} - 1 = \frac{1}{3} - \frac{3}{3} = -\frac{2}{3} \] Thus, both sides equal \( -\frac{2}{3} \). Therefore, the equation \( \left[\frac{-1}{2}\right]+\frac{1}{3}=\frac{1}{3}+\left[\frac{-1}{2}\right] \) is proved to be true.