Pregunta
upstudy study bank question image url

1. Point \( X \) is at \( \frac{2}{3} \) on a number line. On the same number line, point \( Y \) is the same distance from 0 as point \( X \), but it has a numerator of 8 . What is the denominator of the fraction at point \( Y \) ? Draw a numbe line to model the problem.

Ask by Nunez Thornton. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The denominator of the fraction at point \( Y \) is **12**.

Solución

To solve the problem, let's break it down step by step. ### **Problem Statement** - **Point \( X \)** is located at \( \frac{2}{3} \) on a number line. - **Point \( Y \)** is the same distance from 0 as point \( X \) but has a numerator of 8. We need to find the denominator of the fraction representing point \( Y \). ### **Understanding the Problem** 1. **Distance from 0:** - Point \( X \) is at \( \frac{2}{3} \), which means it is \( \frac{2}{3} \) units away from 0. - Since point \( Y \) is the same distance from 0 as \( X \), it can be either: - \( \frac{2}{3} \) (same side as \( X \)) - \( -\frac{2}{3} \) (opposite side of \( X \)) 2. **Fraction Representation for \( Y \):** - Given that the numerator of \( Y \) is 8, we represent \( Y \) as \( \frac{8}{d} \), where \( d \) is the denominator we need to find. ### **Setting Up the Equation** Since \( Y \) is the same distance from 0 as \( X \): \[ \left| \frac{8}{d} \right| = \left| \frac{2}{3} \right| \] This leads to two possibilities: 1. \( \frac{8}{d} = \frac{2}{3} \) 2. \( \frac{8}{d} = -\frac{2}{3} \) Solving for \( d \): 1. **First Case:** \[ \frac{8}{d} = \frac{2}{3} \implies d = \frac{8 \times 3}{2} = 12 \] 2. **Second Case:** \[ \frac{8}{d} = -\frac{2}{3} \implies d = \frac{8 \times (-3)}{2} = -12 \] **Since denominators are typically positive in fraction representations, we take \( d = 12 \).** ### **Conclusion** The denominator of the fraction at point \( Y \) is **12**. ### **Number Line Representation** Below is a simple representation of the number line with points \( X \) and \( Y \): ``` <---|---------|---------|---------|---------|---> -1 -2/3 0 2/3 1 Point Y at -2/3 (represented as 8/12) Point X at 2/3 ``` - **Point \( X \)** is at \( \frac{2}{3} \). - **Point \( Y \)** is at \( -\frac{2}{3} \) (which is equivalent to \( \frac{8}{12} \)). This visual helps illustrate that \( Y \) is indeed the same distance from 0 as \( X \) but on the opposite side of the number line.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find point \( Y \), we first determine the distance from point \( X \) to 0. Point \( X \) at \( \frac{2}{3} \) has a distance of \( \frac{2}{3} \) from 0. Since point \( Y \) is the same distance from 0 but has a numerator of 8, we can set up the equation \( \frac{8}{d} = \frac{2}{3} \). To find the denominator \( d \), we can cross-multiply: \( 8 \cdot 3 = 2 \cdot d \). This yields \( 24 = 2d \). Dividing both sides by 2 gives us \( d = 12 \). So, point \( Y \) is at \( \frac{8}{12} \). Now time to visualize! On a number line, point 0 is at the start, \( \frac{2}{3} \) can be marked approximately two-thirds along the line, and \( \frac{8}{12} \) will be right at the same point as \( \frac{2}{3} \) since they’re equivalent fractions! However, if we adjust to keep it fun, let’s imagine our number line as a fun race track! Point \( X \) is a speed racer halfway through, while point \( Y \) gets a slick upgrade to a new set of wheels (or fractions!), landing at \( \frac{8}{12} \) but keeping pace!

preguntas relacionadas

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad