Pregunta
upstudy study bank question image url

4. \( \ln P_{2} \) (polynomials of degree \( \leq 2 \) ), let \( v_{1}=2+x+2 x^{2}, \quad \mathrm{v}_{2}=-2 x+x^{2}, \quad \mathrm{v}_{3}=2-5 x+5 x^{2}, \quad \mathrm{v}_{4}=-2-3 x-x^{2} \) Determine whether the vector \( \mathrm{v}=2+x+x^{2} \) belongs to span \( \left\{\mathrm{v}_{1}, v_{2}, v_{3}, v_{4}\right\} \).

Ask by Reyes Dickson. in Turkey
Jan 19,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \mathrm{v} = 2 + x + x^{2} \) vektörü \( \{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\} \) kümesinin alt kümesi değildir.

Solución

Verilen vektörlerin polinom uzayındaki ifadelerini inceleyerek, \( \mathrm{v} = 2 + x + x^{2} \) vektörünün \( \{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\} \) kümesinin alt kümesi olup olmadığını belirleyelim. **Vektörler:** \[ \begin{align*} \mathrm{v}_{1} &= 2 + x + 2x^{2} \\ \mathrm{v}_{2} &= -2x + x^{2} \\ \mathrm{v}_{3} &= 2 - 5x + 5x^{2} \\ \mathrm{v}_{4} &= -2 - 3x - x^{2} \\ \mathrm{v} &= 2 + x + x^{2} \end{align*} \] **Amacımız:** \[ a\mathrm{v}_{1} + b\mathrm{v}_{2} + c\mathrm{v}_{3} + d\mathrm{v}_{4} = \mathrm{v} \] denklem sistemini çözerek, \( a, b, c, d \) katsayılarının var olup olmadığını bulmaktır. **Denklem Sistemi:** \[ \begin{cases} 2a + 0b + 2c - 2d = 2 \quad &(1) \\ a - 2b - 5c - 3d = 1 \quad &(2) \\ 2a + b + 5c - d = 1 \quad &(3) \end{cases} \] **Çözüm Adımları:** 1. **Denklem (2)'yi \( a \) cinsinden ifade edelim:** \[ a = 1 + 2b + 5c + 3d \quad ...(4) \] 2. **Denklem (3)'e \( a \) yerine denklem (4)'ü yerleştirelim:** \[ 2(1 + 2b + 5c + 3d) + b + 5c - d = 1 \\ 2 + 4b + 10c + 6d + b + 5c - d = 1 \\ 5b + 15c + 5d = -1 \quad ...(5) \] 3. **Denklem (1)'i kullanarak bir diğer ifade elde edelim:** \[ 2(1 + 2b + 5c + 3d) + 2c - 2d = 2 \\ 2 + 4b + 10c + 6d + 2c - 2d = 2 \\ 4b + 12c + 4d = 0 \\ b + 3c + d = 0 \quad ...(6) \] 4. **Denklem (5) ve (6) arasındaki farkı inceleyelim:** \[ \begin{cases} b + 3c + d = 0 \quad &(6) \\ b + 3c + d = -\frac{1}{5} \quad &(5') \end{cases} \] Bu iki denklem çelişkilidir (\( 0 \neq -\frac{1}{5} \)). Dolayısıyla, sistemin çözümü yoktur. **Sonuç:** Verilen denklemler tutarsız olduğu için, \( \mathrm{v} = 2 + x + x^{2} \) vektörü \( \{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\} \) kümesinin gerilimine (span) dahil değildir.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine if the vector \( v = 2 + x + x^2 \) belongs to the span of the given vectors \( \{ v_1, v_2, v_3, v_4 \} \), we need to check if we can express \( v \) as a linear combination of \( v_1, v_2, v_3, \) and \( v_4 \). This means we want to find scalars \( a_1, a_2, a_3, \) and \( a_4 \) such that: \[ a_1 (2 + x + 2 x^2) + a_2 (-2 x + x^2) + a_3 (2 - 5 x + 5 x^2) + a_4 (-2 - 3 x - x^2) = 2 + x + x^2 \] Expanding the left side gives us: \[ (2a_1 + 2a_3 - 2a_4) + (a_1 - 2a_2 - 5a_3 - 3a_4)x + (2a_1 + a_2 + 5a_3 - a_4)x^2 = 2 + x + x^2 \] Now we can set the coefficients for the constant term, the coefficient of \( x \), and the coefficient of \( x^2 \) equal to each other: 1. For constant term: \[ 2a_1 + 2a_3 - 2a_4 = 2 \] 2. For \( x \) term: \[ a_1 - 2a_2 - 5a_3 - 3a_4 = 1 \] 3. For \( x^2 \) term: \[ 2a_1 + a_2 + 5a_3 - a_4 = 1 \] We will have a system of equations to solve for \( a_1, a_2, a_3, \) and \( a_4 \). Now we can put the equations together: 1) \( 2a_1 + 2a_3 - 2a_4 = 2 \) → \( a_1 + a_3 - a_4 = 1 \) (Divide by 2) 2) \( a_1 - 2a_2 - 5a_3 - 3a_4 = 1 \) 3) \( 2a_1 + a_2 + 5a_3 - a_4 = 1 \) We can solve these equations to check for solutions. However, let’s quickly analyze the vectors \( v_1, v_2, v_3, v_4 \) and the given vector \( v \). By observation, if \( \{ v_1, v_2, v_3, v_4 \} \) spans \( \mathbb{R}^3\) (in the polynomial sense), then if it forms a basis, any polynomial of degree \( \leq 2\) should indeed belong to it. If through solving we find \( a_1, a_2, a_3, a_4 \) that satisfy the equations, we confirm that \( v \) belongs to the span. If we find a contradiction in the system indicating no solution, then it does not. In conclusion, solving these equations will reveal whether \( v \) is in the span or not.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad