The decibel level of a normal conversation, which has an intensity of \( 3.2 \times 10^{-6} \mathrm{watts} / \mathrm{m}^{2} \), is intensity of the sound will be Use the formula \( \beta=10 \log \left(\frac{I}{I_{0}}\right) \), where \( \beta \) is the sound level in decibels, \( I \) is the intensity of sound you are measuring, and \( I_{o} \) is the smallest goes up to 80 , the sound intensity that can be heard by the human ear (roughly equal to \( 1 \times 10^{-12} \) watts \( / \mathrm{m}^{2} \) ).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To calculate the decibel level of a normal conversation, use the formula \( \beta=10 \log \left(\frac{I}{I_{0}}\right) \). Plugging in the values, you have \( I = 3.2 \times 10^{-6} \mathrm{watts/m^2} \) and \( I_{0} = 1 \times 10^{-12} \mathrm{watts/m^2} \). This gives: \[ \beta = 10 \log \left(\frac{3.2 \times 10^{-6}}{1 \times 10^{-12}}\right) = 10 \log(3.2 \times 10^6) \approx 10 \times 6.5 = 65 \text{ dB} \] So, the intensity of a normal conversation is approximately 65 dB, which falls comfortably within the range of everyday sounds! Ever noticed how noisy your living room can get? That’s because everyday sounds like conversations, background music, or even the refrigerator humming can escalate decibel levels significantly! While normal conversation hovers around 60-70 dB, ambient sounds from outside or TV shows can hit around 70-90 dB. It's a fun reminder to appreciate the quieter moments, like enjoying a tranquil park or an early morning cup of coffee in peace!