Calculate \( \tan(75^{\circ}) \) using the difference formula.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To calculate \( \tan(75^{\circ}) \) using the difference formula, we can express \( 75^{\circ} \) as \( 45^{\circ} + 30^{\circ} \). We can use the tangent addition formula: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Setting \( A = 45^{\circ} \) and \( B = 30^{\circ} \): 1. We know that \( \tan(45^{\circ}) = 1 \) and \( \tan(30^{\circ}) = \frac{1}{\sqrt{3}} \). 2. Plugging in the values, we have: \[ \tan(75^{\circ}) = \tan(45^{\circ} + 30^{\circ}) = \frac{\tan(45^{\circ}) + \tan(30^{\circ})}{1 - \tan(45^{\circ}) \tan(30^{\circ})} \] 3. Substituting the values: \[ \tan(75^{\circ}) = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} \] 4. To simplify this, we can multiply the numerator and denominator by \( \sqrt{3} \): \[ \tan(75^{\circ}) = \frac{\sqrt{3}(1 + \frac{1}{\sqrt{3}})}{\sqrt{3}(1 - \frac{1}{\sqrt{3}})} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] 5. For further simplification, we can rationalize the denominator: \[ \tan(75^{\circ}) = \frac{(\sqrt{3} + 1)(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{(\sqrt{3} + 1)^2}{3 - 1} = \frac{3 + 2\sqrt{3} + 1}{2} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] So, the final result is: \[ \tan(75^{\circ}) = 2 + \sqrt{3} \]