Pregunta
upstudy study bank question image url

8:06 Score:0/6 Wors Problems, Similar Triangles (Level 2) Question A guy wire runs from the top of a cell tower to a metal stake in the ground. Grace places a 6-foot tall pole to support the guy wire. After placing the pole, Grace measures the distance from the stake to the pole to be 7 ft . She then measures the distance from the pole to the tower to be 19 ft. Find the length of the guy wire, to the nearest foot. Answer Attempt 1 out of 2

Ask by Klein Turnbull. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The length of the guy wire is approximately 27 feet.

Solución

To determine the length of the guy wire, we can use the concept of similar triangles. Here's a step-by-step breakdown: 1. **Visualizing the Problem:** - Let's denote: - **T** as the top of the cell tower. - **S** as the stake in the ground where the guy wire is anchored. - **P** as the point where Grace places the 6-foot pole. - The distances given are: - From the stake (**S**) to the pole (**P**) horizontally: **7 feet**. - From the pole (**P**) to the base of the tower horizontally: **19 feet**. - Therefore, the total horizontal distance from the stake to the tower is **7 + 19 = 26 feet**. 2. **Setting Up the Similar Triangles:** - The height of the pole (**P**) is **6 feet**, and let’s denote the height of the tower (**T**) as **h** feet. - At point **P**, the wire's height is 6 feet. At the base (**S**), the height is 0 feet, and at the tower (**T**), it's **h** feet. - Since the triangles formed are similar, the ratios of corresponding sides are equal: \[ \frac{h - 6}{h} = \frac{7}{26} \] 3. **Solving for the Height of the Tower (\(h\)):** \[ h - 6 = \frac{7h}{26} \] \[ 26h - 156 = 7h \] \[ 19h = 156 \] \[ h = \frac{156}{19} \approx 8.21 \text{ feet} \] 4. **Calculating the Length of the Guy Wire:** - The guy wire forms the hypotenuse of a right triangle with the horizontal distance of **26 feet** and the tower's height of approximately **8.21 feet**. - Using the Pythagorean theorem: \[ \text{Length of guy wire} = \sqrt{8.21^2 + 26^2} \approx \sqrt{67.6 + 676} \approx \sqrt{743.6} \approx 27.26 \text{ feet} \] - Rounding to the nearest whole number gives **27 feet**. **Answer:** 27

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this problem using similar triangles, we can set up a proportion based on the heights of the pole and the cell tower and their corresponding distances from the stake. Imagine this setup: you have a similar triangle formed by the guy wire, and another triangle formed from the pole to the ground. Use the height of the pole (6 ft) and the distances from the stake (7 ft + 19 ft = 26 ft) to the tower. If you set up the ratio of the height of the pole to the total distance (6 ft / 26 ft), you can use this ratio to find the length of the guy wire (let's call it x), which is a taller triangle formed by the cell tower's height and the same total distance. Thus, the proportion would set up like this: height of the tower/length of the guy wire = 6 feet/26 feet. Finding the exact height of the cell tower becomes a measure based on how tall the guy wire reaches. For common mistakes: A common error is not accurately measuring the distances or misapplying the triangle similarity proportions. Double-check to ensure you're correctly accounting for the entire span of the distance from the stake to the tower — it's crucial to capture that 26 feet correctly while setting the proportion up. Remember to clearly denote your variables and ensure units are consistent! Happy calculating!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad