Pregunta
upstudy study bank question image url

Select the graph of \( y=(0.5) 2^{-x} \)

Ask by Deleon Gross. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph of \( y = 0.5 \cdot 2^{-x} \) is an exponential decay curve that starts at \( (0, 0.5) \), decreases towards the x-axis as \( x \) increases, and increases without bound as \( x \) decreases.

Solución

To identify the graph of the function \( y = 0.5 \cdot 2^{-x} \), let's analyze its key characteristics: ### 1. **Rewrite the Function for Clarity** The given function can be rewritten using properties of exponents: \[ y = 0.5 \cdot 2^{-x} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^{x} = \left(\frac{1}{2}\right)^{x + 1} \] This shows that the function is an exponential decay function with a base of \( \frac{1}{2} \) and a vertical scaling factor of \( \frac{1}{2} \). ### 2. **Key Features of the Graph** - **Y-Intercept:** When \( x = 0 \), \[ y = 0.5 \cdot 2^{0} = 0.5 \cdot 1 = 0.5 \] So, the graph crosses the y-axis at \( (0, 0.5) \). - **Behavior as \( x \) Increases:** As \( x \rightarrow \infty \), \[ y = 0.5 \cdot 2^{-x} \rightarrow 0 \] The graph approaches the x-axis but never touches it (horizontal asymptote at \( y = 0 \)). - **Behavior as \( x \) Decreases:** As \( x \rightarrow -\infty \), \[ y = 0.5 \cdot 2^{-x} \rightarrow \infty \] The graph increases without bound. - **Plotting Additional Points:** | \( x \) | \( y = 0.5 \cdot 2^{-x} \) | |--------|--------------------------| | -2 | \( 0.5 \cdot 2^{2} = 2 \) | | -1 | \( 0.5 \cdot 2^{1} = 1 \) | | 0 | \( 0.5 \cdot 2^{0} = 0.5 \) | | 1 | \( 0.5 \cdot 2^{-1} = 0.25 \) | | 2 | \( 0.5 \cdot 2^{-2} = 0.125 \) | ### 3. **Graph Description** - **Shape:** The graph is a downward-sloping exponential curve. - **Asymptote:** The x-axis (\( y = 0 \)) is a horizontal asymptote. - **Slope:** The function decreases as \( x \) increases. - **Quadrants:** The graph exists in both the first and fourth quadrants due to positive \( y \)-values. ### 4. **Visual Representation** While I can't display images directly, here's how you can sketch the graph based on the information: 1. **Plot the Y-Intercept** at \( (0, 0.5) \). 2. **Plot Additional Points** such as \( (-2, 2) \), \( (-1, 1) \), \( (1, 0.25) \), and \( (2, 0.125) \). 3. **Draw the Asymptote:** Draw a dashed horizontal line along the x-axis (\( y = 0 \)) to indicate that the graph approaches but never touches it. 4. **Sketch the Curve:** Connect the points smoothly, showing the exponential decay as \( x \) increases and exponential growth as \( x \) decreases. ### 5. **Sample Graph** Here’s a rough sketch outline: ``` y | | * | / | / | / |------*-------- x | / | * | ``` - The point where the graph crosses the y-axis is at \( y = 0.5 \). - As \( x \) increases, \( y \) approaches 0. - As \( x \) decreases, \( y \) increases without bound. ### 6. **Conclusion** The graph of \( y = 0.5 \cdot 2^{-x} \) is an exponential decay curve that starts at \( (0, 0.5) \), decreases towards the x-axis as \( x \) increases, and increases without bound as \( x \) decreases. If you're presented with multiple graph options, look for these characteristics to select the correct one.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The function \( y = (0.5) 2^{-x} \) can be visualized as an exponential decay function. Since \( 2^{-x} \) is equivalent to \( \frac{1}{2^x} \), the graph will start at \( 0.5 \) when \( x = 0 \) and will decrease as \( x \) increases. This illustrates how quickly the function approaches zero but never quite touches the x-axis, creating a smooth, downward-sloping curve. When sketching this graph, remember that as \( x \) approaches negative infinity, \( y \) rapidly increases towards infinity, creating a sharp rise on the left side of the graph. The curve will float gently above the x-axis, reflecting the properties of exponential functions where they always remain positive.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad