Responder
a. The account is worth \$14,503.70.
b. The initial deposit was \$10,775.00.
c. The account has been accumulating interest for 15 years.
Solución
To solve the problem, we will use the compound interest formula:
\[
A(t) = P\left(1+\frac{r}{n}\right)^{nt}
\]
where:
- \( A(t) \) is the amount of money accumulated after n years, including interest.
- \( P \) is the principal amount (the initial deposit).
- \( r \) is the annual interest rate (decimal).
- \( n \) is the number of times that interest is compounded per year.
- \( t \) is the time the money is invested for in years.
### Given Information:
- The equation provided is \( 10750\left(1+\frac{0.02}{6}\right)^{90} \).
- Here, \( A(t) = 10750\left(1+\frac{0.02}{6}\right)^{90} \).
- The interest rate \( r = 0.02 \) (2%).
- The number of compounding periods per year \( n = 6 \) (compounded semi-annually).
- The exponent \( 90 \) represents the total number of compounding periods, which is \( nt \).
### Step a: Calculate the value of the account \( A(t) \)
We will calculate \( A(t) \) using the given formula.
1. Calculate \( \frac{r}{n} \):
\[
\frac{0.02}{6} = 0.0033333
\]
2. Calculate \( 1 + \frac{r}{n} \):
\[
1 + 0.0033333 = 1.0033333
\]
3. Calculate \( (1 + \frac{r}{n})^{90} \):
\[
(1.0033333)^{90}
\]
4. Finally, calculate \( A(t) = 10750 \times (1.0033333)^{90} \).
Let's perform these calculations.
### Step b: Find the initial deposit \( P \)
From the formula, we can rearrange it to find \( P \):
\[
P = \frac{A(t)}{\left(1+\frac{r}{n}\right)^{nt}}
\]
### Step c: Determine the number of years \( t \)
Since \( nt = 90 \) and \( n = 6 \), we can find \( t \) as follows:
\[
t = \frac{90}{n} = \frac{90}{6}
\]
Now, let's perform the calculations for parts a, b, and c.
### Performing Calculations
1. Calculate \( (1.0033333)^{90} \).
2. Calculate \( A(t) \).
3. Calculate \( P \).
4. Calculate \( t \).
Let's execute these calculations.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{90}{6}\)
- step1: Reduce the numbers:
\(\frac{15}{1}\)
- step2: Calculate:
\(15\)
Calculate or simplify the expression \( (1.0033333)^90 \).
Calculate the value by following steps:
- step0: Calculate:
\(1.0033333^{90}\)
- step1: Convert the expressions:
\(\left(\frac{10033333}{10000000}\right)^{90}\)
- step2: Use the properties of exponents:
\(\frac{10033333^{90}}{10000000^{90}}\)
Calculate or simplify the expression \( 10750*(1.0033333)^90 \).
Calculate the value by following steps:
- step0: Calculate:
\(10750\times 1.0033333^{90}\)
- step1: Convert the expressions:
\(10750\left(\frac{10033333}{10000000}\right)^{90}\)
- step2: Simplify:
\(10750\times \frac{10033333^{90}}{10000000^{90}}\)
- step3: Rewrite the expression:
\(250\times 43\times \frac{10033333^{90}}{10000000^{90}}\)
- step4: Rewrite the expression:
\(250\times 43\times \frac{10033333^{90}}{62500^{90}\times 160^{90}}\)
- step5: Rewrite the expression:
\(250\times 43\times \frac{10033333^{90}}{250^{180}\times 160^{90}}\)
- step6: Reduce the numbers:
\(43\times \frac{10033333^{90}}{250^{179}\times 160^{90}}\)
- step7: Multiply the fractions:
\(\frac{43\times 10033333^{90}}{250^{179}\times 160^{90}}\)
### Step a: Calculate the value of the account \( A(t) \)
From our calculations:
- \( (1.0033333)^{90} \approx 1.349182 \)
Now, substituting this value into the equation for \( A(t) \):
\[
A(t) = 10750 \times 1.349182 \approx 14503.701212
\]
Rounding to the nearest cent, the value of the account is:
\[
\boxed{14503.70}
\]
### Step b: Find the initial deposit \( P \)
Using the rearranged formula:
\[
P = \frac{A(t)}{\left(1+\frac{r}{n}\right)^{nt}} = \frac{14503.70}{(1.0033333)^{90}} = \frac{14503.70}{1.349182}
\]
Let's calculate \( P \):
\[
P \approx \frac{14503.70}{1.349182} \approx 10775.00
\]
Thus, the initial deposit made to the account is:
\[
\boxed{10775.00}
\]
### Step c: Determine the number of years \( t \)
From our earlier calculation:
\[
t = \frac{90}{6} = 15
\]
Thus, the number of years the account had been accumulating interest is:
\[
\boxed{15}
\]
### Summary of Results:
- a. Value of the account: \( \boxed{14503.70} \)
- b. Initial deposit: \( \boxed{10775.00} \)
- c. Years of accumulation: \( \boxed{15} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución