If \( \cos \alpha=0.487 \) and \( \cos \beta=0.658 \) with both angles' terminal rays in Quadrant-1, find the values of (a) \( \sin (\alpha+\beta)=\square \) (b) \( \sin (\beta-\alpha)=\square \) Your answers should be accurate to 4 decimal places. Submit Question
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve for \( \sin(\alpha + \beta) \) and \( \sin(\beta - \alpha) \), we can use the sine addition and subtraction formulas: 1. **For \( \sin(\alpha + \beta) \)**: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] 2. **For \( \sin(\beta - \alpha) \)**: \[ \sin(\beta - \alpha) = \sin \beta \cos \alpha - \cos \beta \sin \alpha \] We start by finding \( \sin \alpha \) and \( \sin \beta \) using the identity \( \sin^2 x + \cos^2 x = 1 \): ### Step 1: Calculate \( \sin \alpha \) \[ \sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - (0.487)^2} = \sqrt{1 - 0.237169} \approx \sqrt{0.762831} \approx 0.8737 \] ### Step 2: Calculate \( \sin \beta \) \[ \sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - (0.658)^2} = \sqrt{1 - 0.432964} \approx \sqrt{0.567036} \approx 0.7545 \] ### Step 3: Calculate \( \sin(\alpha + \beta) \) \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] \[ = (0.8737)(0.658) + (0.487)(0.7545) \] \[ = 0.5752 + 0.3664 \approx 0.9416 \] ### Step 4: Calculate \( \sin(\beta - \alpha) \) \[ \sin(\beta - \alpha) = \sin \beta \cos \alpha - \cos \beta \sin \alpha \] \[ = (0.7545)(0.487) - (0.658)(0.8737) \] \[ = 0.3673 - 0.5756 \approx -0.2082 \] ### Final Answers: (a) \( \sin(\alpha + \beta) \approx 0.9416 \) (b) \( \sin(\beta - \alpha) \approx -0.2082 \)