The expression for the surface area of a cylinder is shown below. Use it to answer Part A, Part B, and Part C. \( S A=2 \pi\left(\frac{1}{2}\right)^{2}+2 \pi\left(\frac{1}{2}\right)(7) \) Part A: Find the radius of the cylinder. Part B: Find the height of the cylinder. Part C: Explain what the two portions of the formula \( 2 \pi\left(\frac{1}{2}\right)^{2} \) and \( 2 \pi\left(\frac{1}{2}\right)(7) \) represent.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
The radius of the cylinder can be determined directly from the formula, where \( \frac{1}{2} \) represents the radius. Therefore, the radius of the cylinder is \( \frac{1}{2} \) units, or 0.5 units. The height of the cylinder is represented by the term \( 7 \) in the formula. Thus, the height of the cylinder is 7 units. The expression \( 2 \pi\left(\frac{1}{2}\right)^{2} \) calculates the area of the two circular bases of the cylinder, while \( 2 \pi\left(\frac{1}{2}\right)(7) \) represents the lateral surface area that wraps around the sides of the cylinder. These two portions together give the complete surface area of the cylinder!